Research
The AIDOS lab is dedicated to establishing foundational principles in machine learning. Leveraging our experience in computational geometry and topology, we focus on shaping well-principled methods to address holes in rapidly evolving AI landscape. We see ourselves as toolsmiths, crafting both observational and interventional frameworks using concepts such as the Euler characteristic, metric space magnitude, curvature, persistent homology, etc. Whether working with graphs, images, or natural language, our goal is to build tools that shed light on the most difficult questions, prioritizing simplicity, elegance, and interpretability over mere performance. We hope our work can give back to the community, empowering new research directions and application developments grounded in principled methods. Although our core research targets method development in machine learning, we are also passionate about impacting change with the help of our wonderful collaborators in biomedical, healthcare, and environmental applications.
Toolbox
Here is a collection of tools that have been developed by the AIDOS Lab, in order from most to least recent.



Publications
Here are all publications of lab members, sorted by year. Publications appear in the order in which they are accepted.
Preprints
- No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets
C. Coupette†, J. Wayland†, E. Simons, and B. Rieck
Preprint, 2025
[Preprint] • [BibTeX] - Topology Meets Machine Learning: An Introduction Using the Euler Characteristic Transform
B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Detecting and Approximating Redundant Computational Blocks in Neural Networks
I. Cannistraci, E. Rodolà, and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Point Cloud Synthesis Using Inner Product Transforms
E. Röell and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Diss-L-Ect: Dissecting Graph Data With Local Euler Characteristic Transforms
J. von Rohrscheidt and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Detecting Spatial Dependence in Transcriptomics Data Using Vectorised Persistence Diagrams
K. Limbeck and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Characterizing Physician Referral Networks With Ricci Curvature
J. Wayland, R. J. Funk, and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Persistent Homology via Ellipsoids
S. Kališnik, B. Rieck, and A. Žegarac
Preprint, 2024
[Preprint] • [BibTeX] - Topologically Regularized Multiple Instance Learning to Harness Data Scarcity
S. Kazeminia, C. Marr‡, and B. Rieck‡
Preprint, 2024
[Preprint] • [BibTeX] - The Manifold Density Function: An Intrinsic Method for the Validation of Manifold Learning
B. Holmgren, E. Quist, J. Schupbach, B. T. Fasy, and B. Rieck
Preprint, 2024
[Preprint] • [BibTeX] - Filtration Surfaces for Dynamic Graph Classification
F. Srambical and B. Rieck
Preprint, 2023
[Preprint] • [BibTeX] - Evaluating the “Learning on Graphs” Conference Experience
B. Rieck and C. Coupette
Preprint, 2023
[Preprint] • [BibTeX] - Capturing Spatiotemporal Signaling Patterns in Cellular Data With Geometric Scattering Trajectory Homology
D. Bhaskar†, J. Moore†, F. Gao, B. Rieck, F. Khasawneh, E. Munch, V. Greco‡, and S. Krishnaswamy‡
Preprint, 2023
[Preprint] • [BibTeX] - Improved MALDI-TOF MS Based Antimicrobial Resistance Prediction Through Hierarchical Stratification
C. Weis†, B. Rieck†, S. Balzer†, A. Cuénod, A. Egli, and K. Borgwardt
Preprint, 2022
[Preprint] • [BibTeX] - Basic Analysis of Bin-Packing Heuristics
B. Rieck
Preprint, 2021
[Preprint] • [GitHub] • [BibTeX] - Path Imputation Strategies for Signature Models of Irregular Time Series
M. Moor, M. Horn, C. Bock, K. Borgwardt, and B. Rieck
Preprint, 2020
[Preprint] • [BibTeX]
A preliminary version of this work was accepted for presentation at the ICML Workshop on the Art of Learning with Missing Values (ARTEMISS)
2025
- MANTRA: The Manifold Triangulations Assemblage
R. Ballester†, E. Röell†, D. Bin Schmid†, M. Alain†, S. Escalera, C. Casacuberta, and B. Rieck
International Conference on Learning Representations, 2025 (in press)
[Preprint] • [BibTeX] - MAGNet: Motif-Agnostic Generation of Molecules From Shapes
L. Hetzel†, J. Sommer†, B. Rieck, F. Theis, and S. Günnemann
International Conference on Learning Representations, 2025 (in press)
[Preprint] • [BibTeX] - Principal Curvatures Estimation With Applications to Single Cell Data
Y. Zhang, L. Mezrag, X. Sun, C. Xu, K. Macdonald, D. Bhaskar, S. Krishnaswamy‡, G. Wolf‡, and B. Rieck‡
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025 (in press)
[Preprint] • [BibTeX]
2024
- CliquePH: Higher-Order Information for Graph Neural Networks Through Persistent Homology on Clique Graphs
D. Buffelli†, F. Soleymani†, and B. Rieck
Proceedings of the Third Learning on Graphs Conference, 2024 (in press)
[Preprint] • [BibTeX] - Bayesian Computation Meets Topology
J. von Rohrscheidt, B. Rieck‡, and S. M. Schmon‡
Transactions on Machine Learning Research, 2024
[BibTeX] - Graph Classification Gaussian Processes via Hodgelet Spectral Features
M. Alain, S. Takao, B. Rieck, X. Dong, and E. Noutahi
‘Bayesian Decision-Making and Uncertainty’ Workshop at NeurIPS, 2024
[BibTeX] - On the Expressivity of Persistent Homology in Graph Learning
R. Ballester and B. Rieck
Proceedings of the Third Learning on Graphs Conference, 2024 (in press)
[Preprint] • [BibTeX] - Metric Space Magnitude for Evaluating the Diversity of Latent Representations
K. Limbeck, R. Andreeva, R. Sarkar, and B. Rieck
Advances in Neural Information Processing Systems, Volume 37, pp. 123911–123953, 2024
[Preprint] • [BibTeX] - Position: Topological Deep Learning Is the New Frontier for Relational Learning
T. Papamarkou, T. Birdal, M. Bronstein, G. Carlsson, J. Curry, Y. Gao, M. Hajij, R. Kwitt, P. Liò, P. Di Lorenzo, V. Maroulas, N. Miolane, F. Nasrin, K. N. Ramamurthy, B. Rieck, S. Scardapane, M. T. Schaub, P. Veličković, B. Wang, Y. Wang, G. Wei, and G. Zamzmi
Proceedings of the 41st International Conference on Machine Learning, Number 235, pp. 39529–39555, 2024
[Preprint] • [BibTeX] - Mapping the Multiverse of Latent Representations
J. Wayland, C. Coupette‡, and B. Rieck‡
Proceedings of the 41st International Conference on Machine Learning, Number 235, pp. 52372–52402, 2024
[Preprint] • [GitHub] • [BibTeX] - The Magnitude Vector of Images
M. F. Adamer, E. De Brouwer, L. O’Bray, and B. Rieck
Journal of Applied and Computational Topology, Volume 8, Number 3, pp. 447–473, 2024
[Preprint] • [BibTeX] - Adaptative Local PCA for Curvature Estimation on Data Manifolds
Y. Zhang†, L. Mezrag†, X. Sun, C. Xu, S. Krishnaswamy‡, G. Wolf‡, and B. Rieck‡
Helmholtz AI Conference: AI for Science, 2024
[BibTeX] - Enhancing the Diagnosis of Functionally Relevant Coronary Artery Disease With Machine Learning
C. Bock†, J. E. Walter†, B. Rieck†, I. Strebel, K. Rumora, I. Schaefer, M. J. Zellweger, K. Borgwardt‡, and C. Müller‡
Nature Communications, Volume 15, Number 1, 2024
[BibTeX] - Advancing Precision Medicine: Algebraic Topology and Differential Geometry in Radiology and Computational Pathology
R. M. Levenson, Y. Singh, B. Rieck, Q. A. Hathaway, C. Farrelly, J. Rozenblit, P. Prasanna, B. Erickson, A. Choudhary, G. Carlsson, and D. Deepa
Laboratory Investigation, Volume 104, Number 6, 2024
[BibTeX] - All the World’s a (Hyper)Graph: A Data Drama
C. Coupette, J. Vreeken, and B. Rieck
Digital Scholarship in the Humanities, Volume 39, Number 1, pp. 74–96, 2024
[Preprint] • [Author’s copy] • [GitHub] • [BibTeX] - Simplicial Representation Learning With Neural $k$-Forms
K. Maggs, C. Hacker, and B. Rieck
International Conference on Learning Representations, 2024
[Preprint] • [GitHub] • [BibTeX] - Differentiable Euler Characteristic Transforms for Shape Classification
E. Röell and B. Rieck
International Conference on Learning Representations, 2024
[Preprint] • [GitHub] • [BibTeX]
2023
- Weisfeiler and Leman Go Machine Learning: The Story So Far
C. Morris, Y. Lipman, H. Maron, B. Rieck, N. M. Kriege, M. Grohe, M. Fey, and K. Borgwardt
Journal of Machine Learning Research, Volume 24, Number 333, pp. 1–59, 2023
[Preprint] • [BibTeX] - Curvature Filtrations for Graph Generative Model Evaluation
J. Southern†, J. Wayland†, M. Bronstein, and B. Rieck
Advances in Neural Information Processing Systems, Volume 36, pp. 63036–63061, 2023
[Preprint] • [BibTeX] - Who Can Submit an Excellent Review for This Manuscript in the Next 30 Days? — Peer Reviewing in the Age of Overload
H. Alhoori, E. A. Fox, I. Frommholz, H. Liu, C. Coupette, B. Rieck, Ghosal, and J. Wu
ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 319–320, 2023
[BibTeX] - A Diffusion Model Predicts 3D Shapes From 2D Microscopy Images
D. J. Waibel, E. Röell, B. Rieck‡, R. Giryes‡, and C. Marr‡
IEEE International Symposium on Biomedical Imaging (ISBI), 2023
[Preprint] • [BibTeX] - Predicting Sepsis Using Deep Learning Across International Sites: A Retrospective Development and Validation Study
M. Moor†, N. Bennet†, D. Plecko†, M. Horn†, B. Rieck, N. Meinshausen, P. Bühlmann, and K. Borgwardt
eClinicalMedicine, Volume 62, pp. 102124, 2023
[Preprint] • [BibTeX] - Metric Space Magnitude and Generalisation in Neural Networks
R. Andreeva, K. Limbeck, B. Rieck‡, and R. Sarkar‡
Proceedings of the 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML), Number 221, pp. 242–253, 2023
[Preprint] • [BibTeX] - Topological Singularity Detection at Multiple Scales
J. von Rohrscheidt and B. Rieck
Proceedings of the 40th International Conference on Machine Learning, Number 202, pp. 35175–35197, 2023
[Preprint] • [GitHub] • [BibTeX] - Time-Inhomogeneous Diffusion Geometry and Topology
G. Huguet†, A. Tong†, B. Rieck†, J. Huang†, M. Kuchroo, M. Hirn‡, G. Wolf‡, and S. Krishnaswamy‡
SIAM Journal on Mathematics of Data Science, Volume 5, Number 2, pp. 346–372, 2023
[Preprint] • [BibTeX] - Single-Cell Analysis Reveals Inflammatory Interactions Driving Macular Degeneration
M. Kuchroo†, M. DiStasio†, E. Song, E. Calapkulu, L. Zhang, M. Ige, A. H. Sheth, A. Majdoubi, M. Menon, A. Tong, A. Godavarthi, Y. Xing, S. Gigante, H. Steach, J. Huang, G. Huguet, J. Narain, K. You, G. Mourgkos, R. M. Dhodapkar, M. J. Hirn, B. Rieck, G. Wolf, S. Krishnaswamy‡, and B. P. Hafler‡
Nature Communications, Volume 14, Number 1, pp. 2589, 2023
[BibTeX] - Cell Cycle Controls Long-Range Calcium Signaling in the Regenerating Epidermis
J. L. Moore†, D. Bhaskar†, F. Gao†, C. Matte-Martone, S. Du, E. Lathrop, S. Ganesan, L. Shao, R. Norris, N. C. Sanz, K. Annusver, M. Kasper, A. Cox, C. Hendry, B. Rieck, S. Krishnaswamy‡, and V. Greco‡
Journal of Cell Biology, Volume 222, Number 7, pp. e202302095, 2023
[BibTeX] - DONUT: Creation, Development, and Opportunities of a Database
B. Giunti, J. Lazovskis, and B. Rieck
Notices of the American Mathematical Society, Volume 70, Number 10, pp. 1640–1644, 2023
[Preprint] • [BibTeX] - A Note on Cherry-Picking in Meta-Analyses
D. Yoneoka and B. Rieck
Entropy, Volume 25, Number 4, 2023
[BibTeX] - Euler Characteristic Transform Based Topological Loss for Reconstructing 3D Images From Single 2D Slices
K. V. Nadimpalli, A. Chattopadhyay‡, and B. Rieck‡
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 571–579, 2023
[Preprint] • [BibTeX] - Ollivier–Ricci Curvature for Hypergraphs: A Unified Framework
C. Coupette, S. Dalleiger, and B. Rieck
International Conference on Learning Representations, 2023
[Preprint] • [BibTeX]
2022
- Topological Jet Tagging
D. Thomas, S. Demers, S. Krishnaswamy‡, and B. Rieck‡
‘Machine Learning and the Physical Sciences’ Workshop at NeurIPS, 2022
[BibTeX] - Approximate Bayesian Computation for Panel Data With Signature Maximum Mean Discrepancies
J. Dyer, J. Fitzgerald, B. Rieck, and S. M. Schmon
‘Temporal Graph Learning’ Workshop at NeurIPS, 2022
[BibTeX] - On Measuring Excess Capacity in Neural Networks
F. Graf, S. Zeng, B. Rieck, M. Niethammer, and R. Kwitt
Advances in Neural Information Processing Systems, Volume 35, pp. 10164–10178, 2022
[Preprint] • [BibTeX] - Taxonomy of Benchmarks in Graph Representation Learning
R. Liu†, S. Cantürk†, F. Wenkel, D. Sandfelder, D. Kreuzer, A. Little, S. McGuire, L. O’Bray, M. Perlmutter‡, B. Rieck‡, M. Hirn‡, G. Wolf‡, and L. Rampášek†‡
Proceedings of the First Learning on Graphs Conference, Number 198, pp. 6:1–6:25, 2022
[Preprint] • [BibTeX]
Accepted as an oral presentation at LoG (top 5% of all submissions) - On the Surprising Behaviour of node2vec
C. Hacker and B. Rieck
Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, Number 196, pp. 142–151, 2022
[Preprint] • [GitHub] • [BibTeX] - Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
D. Bhaskar†, K. MacDonald†, O. Fasina, D. Thomas, B. Rieck, I. Adelstein‡, and S. Krishnaswamy‡
Advances in Neural Information Processing Systems, 2022
[Preprint] • [BibTeX] - Diffusion-Based Methods for Estimating Curvature in Data
K. MacDonald, J. Paige, D. Thomas, S. Zhao, K. You, I. M. Adelstein, Y. Aizenbud, B. Rieck, D. Bhaskar, and S. Krishnaswamy
‘Geometrical and Topological Representation Learning’ Workshop at ICLR, 2022
[BibTeX] - Capturing Shape Information With Multi-Scale Topological Loss Terms for 3D Reconstruction
D. J. Waibel, S. Atwell, M. Meier, C. Marr, and B. Rieck
Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 150–159, 2022
[Preprint] • [GitHub] • [BibTeX] - Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
L. O’Bray†, M. Horn†, B. Rieck‡, and K. Borgwardt‡
International Conference on Learning Representations, 2022
[Preprint] • [GitHub] • [BibTeX]
Accepted as a spotlight presentation (top 5% of all submissions) - Topological Graph Neural Networks
M. Horn†, E. De Brouwer†, M. Moor, Y. Moreau, B. Rieck‡, and K. Borgwardt‡
International Conference on Learning Representations, 2022
[Preprint] • [GitHub] • [BibTeX] - Exploring the Geometry and Topology of Neural Network Loss Landscapes
S. Horoi†, J. Huang†, B. Rieck, G. Lajoie, G. Wolf‡, and S. Krishnaswamy‡
Advances in Intelligent Data Analysis XX, pp. 171–184, 2022
[Preprint] • [BibTeX] - Direct Antimicrobial Resistance Prediction From Clinical MALDI-TOF Mass Spectra Using Machine Learning
C. Weis, A. Cuénod, B. Rieck, O. Dubuis, S. Graf, C. Lang, M. Oberle, M. Brackmann, K. K. Søgaard, M. Osthoff, K. Borgwardt‡, and A. Egli‡
Nature Medicine, Volume 28, Number 1, pp. 164–174, 2022
[Preprint] • [GitHub] • [BibTeX] - Multiscale PHATE Identifies Multimodal Signatures Of
COVID-19
M. Kuchroo†, J. Huang†, P. Wong†, J. Grenier, D. Shung, A. Tong, C. Lucas, J. Klein, D. B. Burkhardt, S. Gigante, A. Godavarthi, B. Rieck, B. Israelow, M. Simonov, T. Mao, J. E. Oh, J. Silva, T. Takahashi, C. D. Odio, A. Casanovas-Massana, J. Fournier, Y. I. Team, S. Farhadian, C. S. Dela Cruz, A. I. Ko, M. J. Hirn, F. P. Wilson‡, J. G. Hussin‡, G. Wolf‡, A. Iwasaki‡, and S. Krishnaswamy
Nature Biotechnology, Volume 40, Number 5, pp. 681–691, 2022
[Preprint] • [BibTeX]
2021
- Interpretability Aware Model Training to Improve Robustness Against Out-of-Distribution Magnetic Resonance Images in Alzheimer’s Disease Classification
M. Kuijs, C. R. Jutzeler, B. Rieck, and S. C. Brüningk
‘Machine Learning for Health (ML4H)’ Symposium, 2021
[Preprint] • [BibTeX] - Towards a Taxonomy of Graph Learning Datasets
R. Liu†, S. Cantürk†, F. Wenkel, D. Sandfelder, D. Kreuzer, A. Little, S. McGuire, M. Perlmutter, L. O’Bray, B. Rieck, M. Hirn, G. Wolf, and L. Rampášek
‘Data-Centric AI’ Workshop at NeurIPS, 2021
[Preprint] • [BibTeX] - Exploring the Loss Landscape of Neural Networks With Manifold Learning and Topological Data Analysis
S. Horoi†, J. Huang†, B. Rieck, G. Lajoie, G. Wolf‡, and S. Krishnaswamy‡
Montreal AI Symposium, 2021
[BibTeX] - A Sandbox for Prediction and Integration of DNA, RNA, and Proteins in Single Cells
M. D. Lücken†, D. B. Burkhardt†, R. Cannoodt†, C. Lance†, A. Agrawal, H. Aliee, A. T. Chen, L. Deconinck, A. M. Detweiler, A. A. Granados, S. Huynh, L. Isacco, Y. J. Kim, B. De Kumar, S. Kuppasani, H. Lickert, A. McGeever, J. C. Melgarejo, H. Mekonen, M. Morri, M. Müller, N. Neff, S. Paul, B. Rieck, K. Schneider, S. Steelman, M. Sterr, D. J. Treacy, A. Tong, A. Villani, G. Wang, J. Yan, C. Zhang, A. O. Pisco‡, S. Krishnaswamy‡, F. J. Theis‡, and J. M. Bloom‡
Advances in Neural Information Processing Systems (Datasets and Benchmarks Track), 2021
[BibTeX] - Topological Graph Neural Networks
M. Horn†, E. De Brouwer†, M. Moor, Y. Moreau, B. Rieck‡, and K. Borgwardt‡
29th Fall Workshop on Computational Geometry, 2021
[BibTeX] - Filtration Curves for Graph Representation
L. O’Bray†, B. Rieck†, and K. Borgwardt
Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1267–1275, 2021
[Author’s copy] • [GitHub] • [BibTeX] - Advances in Graph Kernels
K. Ghalamkari, M. Sugiyama, L. O’Bray, B. Rieck, and K. Borgwardt
Journal of the Japanese Society for Artificial Intelligence, Volume 36, Number 4, pp. 421–429, 2021
[GitHub] • [BibTeX]
This article constitutes an abridged translation of our survey ‘Graph Kernels: State-of-the-Art and Future Challenges’ - Back to the Basics With Inclusion of Clinical Domain Knowledge — A Simple, Scalable, and Effective Model of Alzheimer’s Disease Classification
S. C. Brüningk†, F. Hensel†, L. Lukas, M. Kuijs, C. R. Jutzeler‡, and B. Rieck‡
Proceedings of the 6th Machine Learning for Healthcare Conference, Number 149, pp. 730–754, 2021
[BibTeX] - Stable Topological Signatures for Metric Trees Through Graph Approximations
R. Vandaele, B. Rieck, Y. Saeys, and T. De Bie
Pattern Recognition Letters, Volume 147, pp. 85–92, 2021
[BibTeX] - Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review
M. Moor†, B. Rieck†, M. Horn, C. R. Jutzeler‡, and K. Borgwardt‡
Frontiers in Medicine, Volume 8, 2021
[BibTeX] - A Survey of Topological Machine Learning Methods
F. Hensel, M. Moor, and B. Rieck
Frontiers in Artificial Intelligence, Volume 4, 2021
[BibTeX] - Exploring Epithelial-Cell Calcium Signaling With Geometric and Topological Data Analysis
F. Gao, J. Moore, B. Rieck, V. Greco, and S. Krishnaswamy
‘Geometrical and Topological Representation Learning’ Workshop at ICLR, 2021
[BibTeX] - Accelerating Detection of Lung Pathologies With Explainable Ultrasound Image Analysis
J. Born†, N. Wiedemann†, M. Cossio, C. Buhre, G. Brändle, K. Leidermann, J. Goulet, A. Aujayeb, M. Moor, B. Rieck, and K. Borgwardt
Applied Sciences, Volume 11, Number 2, 2021
[Preprint] • [GitHub] • [BibTeX] - Network-Guided Search for Genetic Heterogeneity Between Gene Pairs
A. C. Gumpinger, B. Rieck, D. G. Grimm, I. H. Consortium, and K. Borgwardt
Bioinformatics, Volume 37, Number 1, pp. 57–65, 2021
[GitHub] • [BibTeX]
2020
- Persistence Concepts for 2D Skeleton Evolution Analysis
B. Rieck, F. Sadlo, and H. Leitte
Topological Methods in Data Analysis and Visualization V, pp. 139–154, 2020
[Preprint] • [GitHub] • [BibTeX] - Topological Machine Learning With Persistence Indicator Functions
B. Rieck, F. Sadlo, and H. Leitte
Topological Methods in Data Analysis and Visualization V, pp. 87–101, 2020
[Preprint] • [BibTeX] - Persistent Intersection Homology for the Analysis of Discrete Data
B. Rieck, M. Banagl, F. Sadlo, and H. Leitte
Topological Methods in Data Analysis and Visualization V, pp. 37–51, 2020
[Preprint] • [BibTeX] - Hierarchies and Ranks for Persistence Pairs
B. Rieck, F. Sadlo, and H. Leitte
Topological Methods in Data Analysis and Visualization V, pp. 3–17, 2020
[Preprint] • [BibTeX] - Topological Data Analysis of Copy Number Alterations in Cancer
S. Groha†, C. Weis†, A. Gusev, and B. Rieck
‘Learning Meaningful Representations of Life’ Workshop at NeurIPS, 2020
[Preprint] • [BibTeX] - Scalable Solutions for MR Image Classification of Alzheimer’s Disease
S. C. Brüningk†, F. Hensel†, C. R. Jutzeler‡, and B. Rieck‡
‘Medical Imaging meets NeurIPS’ Workshop at NeurIPS, 2020
[BibTeX] - Image Analysis for Alzheimer’s Disease Prediction: Embracing Pathological Hallmarks for Model Architecture Design
S. C. Brüningk†, F. Hensel†, C. R. Jutzeler‡, and B. Rieck‡
‘Machine Learning for Health (ML4H)’ Workshop at NeurIPS, 2020
[Preprint] • [GitHub] • [BibTeX] - Graph Kernels: State-of-the-Art and Future Challenges
K. Borgwardt, E. Ghisu, F. Llinares-López, L. O’Bray, and B. Rieck
Foundations and Trends® in Machine Learning, Volume 13, Number 5–6, pp. 531–712, 2020
[Preprint] • [GitHub] • [BibTeX] - Challenging Euclidean Topological Autoencoders
M. Moor, M. Horn, K. Borgwardt, and B. Rieck
‘Topological Data Analysis and Beyond’ Workshop at NeurIPS, 2020
[GitHub] • [BibTeX] - Uncovering the Topology of Time-Varying fMRI Data Using Cubical Persistence
B. Rieck†, T. Yates†, C. Bock, K. Borgwardt, G. Wolf, N. Turk-Browne‡, and S. Krishnaswamy‡
Advances in Neural Information Processing Systems, Volume 33, pp. 6900–6912, 2020
[Preprint] • [GitHub] • [BibTeX]
Accepted as a spotlight presentation at NeurIPS (top 3% of all submissions) - Topological Methods for fMRI Data
B. Rieck†, T. Yates†, C. Bock, K. Borgwardt, G. Wolf, N. Turk-Browne‡, and S. Krishnaswamy‡
ICML Workshop on Computational Biology, 2020
[BibTeX] - Kernel-Based Antimicrobial Resistance Prediction From MALDI-TOF Mass Spectra
C. Weis†, M. Horn†, B. Rieck†, A. Cuénod, A. Egli, and K. Borgwardt
ICML Workshop on Machine Learning for Global Health, 2020
[BibTeX] - Path Imputation Strategies for Signature Models
M. Moor, M. Horn, C. Bock, K. Borgwardt, and B. Rieck
ICML Workshop on the Art of Learning with Missing Values (ARTEMISS), 2020
[BibTeX] - Enhancing Statistical Power in Temporal Biomarker Discovery Through Representative Shapelet Mining
T. Gumbsch, C. Bock, M. Moor, B. Rieck, and K. Borgwardt
Bioinformatics, Volume 36, Number Supplement_2, pp. i840–i848, 2020
[GitHub] • [BibTeX] - Topological Autoencoders
M. Moor†, M. Horn†, B. Rieck‡, and K. Borgwardt‡
Proceedings of the 37th International Conference on Machine Learning, Number 119, pp. 7045–7054, 2020
[Preprint] • [GitHub] • [BibTeX] - Set Functions for Time Series
M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt
Proceedings of the 37th International Conference on Machine Learning, Number 119, pp. 4353–4363, 2020
[Preprint] • [GitHub] • [BibTeX] - Graph Filtration Learning
C. D. Hofer, F. Graf, B. Rieck, M. Niethammer, and R. Kwitt
Proceedings of the 37th International Conference on Machine Learning, Number 119, pp. 4314–4323, 2020
[Preprint] • [GitHub] • [BibTeX] - Comorbidities, Clinical Signs and Symptoms, Laboratory Findings, Imaging Features, Treatment Strategies, and Outcomes in Adult and Pediatric Patients With COVID-19: A Systematic Review and Meta-Analysis
C. R. Jutzeler†, L. Bourguignon†, C. V. Weis, B. Tong, C. Wong, B. Rieck, H. Pargger, S. Tschudin-Sutter, A. Egli, K. Borgwardt‡, and M. Walter‡
Travel Medicine and Infectious Disease, Volume 37, pp. 101825, 2020
[Preprint] • [BibTeX] - Topological and Kernel-Based Microbial Phenotype Prediction From MALDI-TOF Mass Spectra
C. Weis†, M. Horn†, B. Rieck†, A. Cuénod, A. Egli, and K. Borgwardt
Bioinformatics, Volume 36, Number Supplement_1, pp. i30–i38, 2020
[GitHub] • [BibTeX] - Early Prediction of Circulatory Failure in the Intensive Care Unit Using Machine Learning
S. L. Hyland†, M. Faltys†, M. Hüser†, X. Lyu†, T. Gumbsch†, C. Esteban, C. Bock, M. Horn, M. Moor, B. Rieck, M. Zimmermann, D. Bodenham, K. Borgwardt‡, G. Rätsch‡, and T. M. Merz‡
Nature Medicine, Volume 26, Number 3, pp. 364–373, 2020
[GitHub] • [BibTeX]
2019
- Wasserstein Weisfeiler–Lehman Graph Kernels
M. Togninalli†, E. Ghisu†, F. Llinares-López, B. Rieck, and K. Borgwardt
Advances in Neural Information Processing Systems, Volume 32, pp. 6436–6446, 2019
[Preprint] • [GitHub] • [BibTeX]
Accepted as a spotlight presentation at NeurIPS (top 3% of all submissions) - A Wasserstein Subsequence Kernel for Time Series
C. Bock†, M. Togninalli†, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt
‘Optimal Transport & Machine Learning’ Workshop at NeurIPS, 2019
[GitHub] • [BibTeX] - A Wasserstein Subsequence Kernel for Time Series
C. Bock†, M. Togninalli†, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt
Proceedings of the 19th IEEE International Conference on Data Mining (ICDM), pp. 964–969, 2019
[Author’s copy] • [GitHub] • [BibTeX] - Early Recognition of Sepsis With Gaussian Process Temporal Convolutional Networks and Dynamic Time Warping
M. Moor, M. Horn, B. Rieck, D. Roqueiro, and K. Borgwardt
Proceedings of the 4th Machine Learning for Healthcare Conference, Number 106, pp. 2–26, 2019
[Preprint] • [GitHub] • [BibTeX] - A Persistent Weisfeiler–Lehman Procedure for Graph Classification
B. Rieck†, C. Bock†, and K. Borgwardt
Proceedings of the 36th International Conference on Machine Learning, Number 97, pp. 5448–5458, 2019
[GitHub] • [BibTeX] - Visualization of Equivalence in 2D Bivariate Fields
B. Zheng, B. Rieck, H. Leitte, and F. Sadlo
Computer Graphics Forum, Volume 38, Number 3, pp. 311–323, 2019
[Author’s copy] • [BibTeX] - Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology
B. Rieck†, M. Togninalli†, C. Bock†, M. Moor, M. Horn, T. Gumbsch, and K. Borgwardt
International Conference on Learning Representations, 2019
[Preprint] • [GitHub] • [BibTeX]
2018
- Association Mapping in Biomedical Time Series via Statistically Significant Shapelet Mining
C. Bock, T. Gumbsch, M. Moor, B. Rieck, D. Roqueiro, and K. Borgwardt
Bioinformatics, Volume 34, Number 13, pp. i438–i446, 2018
[GitHub] • [BibTeX] - Visualization of Fullerene Fragmentation
K. Sdeo, B. Rieck, and F. Sadlo
Proceedings of IEEE Pacific Visualization Symposium (PacificVis), pp. 111–115, 2018
[Author’s copy] • [BibTeX] - Visualization of 4D Vector Field Topology
L. Hofmann, B. Rieck, and F. Sadlo
Computer Graphics Forum, Volume 37, Number 3, pp. 301–313, 2018
[Author’s copy] • [BibTeX] - Visualization of Parameter Sensitivity of 2D Time-Dependent Flow
K. Hanser, O. Klein, B. Rieck, B. Wiebe, T. Selz, M. Piatkowski, A. Sagristà, B. Zheng, M. Lukácová-Medvidová, G. Craig, H. Leitte, and F. Sadlo
Advances in Visual Computing (Proceedings of the 13th International Symposium on Visual Computing), pp. 359–370, 2018
[BibTeX] - Clique Community Persistence: A Topological Visual Analysis Approach for Complex Networks
B. Rieck, U. Fugacci, J. Lukasczyk, and H. Leitte
IEEE Transactions on Visualization and Computer Graphics, Volume 24, Number 1, pp. 822–831, 2018
[Author’s copy] • [GitHub] • [BibTeX]
2017
- Persistent Homology in Multivariate Data Visualization
B. Rieck
Ph.D. thesis, Heidelberg University, 2017
[Author’s copy] • [BibTeX] - Persistence Concepts for 2D Skeleton Evolution Analysis
B. Rieck, H. Leitte, and F. Sadlo
Workshop on Topology-Based Methods in Visualization (TopoInVis), 2017
[GitHub] • [BibTeX] - Hierarchies and Ranks for Persistence Pairs
B. Rieck, H. Leitte, and F. Sadlo
Workshop on Topology-Based Methods in Visualization (TopoInVis), 2017
[BibTeX]
Award for the best extended abstract - Agreement Analysis of Quality Measures for Dimensionality Reduction
B. Rieck and H. Leitte
Topological Methods in Data Analysis and Visualization IV, pp. 103–117, 2017
[Author’s copy] • [BibTeX]
2016
- ‘Shall I Compare Thee to a Network?’ — Visualizing the Topological Structure of Shakespeare’s Plays
B. Rieck and H. Leitte
Workshop on Visualization for the Digital Humanities at IEEE Vis, 2016
[GitHub] • [BibTeX] - Exploring and Comparing Clusterings of Multivariate Data Sets Using Persistent Homology
B. Rieck and H. Leitte
Computer Graphics Forum, Volume 35, Number 3, pp. 81–90, 2016
[Author’s copy] • [BibTeX] - Interactive Similarity Analysis and Error Detection in Large Tree Collections
J. Fangerau, B. Höckendorf, B. Rieck, C. Heine, J. Wittbrodt, and H. Leitte
Visualization in Medicine and Life Sciences III, pp. 287–307, 2016
[BibTeX]
2015
- Comparing Dimensionality Reduction Methods Using Data Descriptor Landscapes
B. Rieck and H. Leitte
Symposium on Visualization in Data Science (VDS) at IEEE VIS, 2015
[BibTeX] - Persistent Homology for the Evaluation of Dimensionality Reduction Schemes
B. Rieck and H. Leitte
Computer Graphics Forum, Volume 34, Number 3, pp. 431–440, 2015
[Author’s copy] • [BibTeX] - Agreement Analysis of Quality Measures for Dimensionality Reduction
B. Rieck and H. Leitte
Workshop on Topology-Based Methods in Visualization (TopoInVis), 2015
[BibTeX]
2014
- Enhancing Comparative Model Analysis Using Persistent Homology
B. Rieck and H. Leitte
IEEE Vis Workshop on Visualization for Predictive Analytics, 2014
[BibTeX] - Structural Analysis of Multivariate Point Clouds Using Simplicial Chains
B. Rieck and H. Leitte
Computer Graphics Forum, Volume 33, Number 8, pp. 28–37, 2014
[Author’s copy] • [BibTeX]
2013
- Unwrapping Highly-Detailed 3D Meshes of Rotationally Symmetric Man-Made Objects
B. Rieck, H. Mara, and S. Krömker
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W1, pp. 259–264, 2013
[BibTeX] - Der “Gesprengte Turm” Am Heidelberger Schloss – Untersuchung Eines Kulturdenkmals Mithilfe Hoch Auflösender Terrestrischer Laserscans
M. Forbriger, H. Mara, B. Rieck, C. Siart, and O. Wagener
Denkmalpflege in Baden-Württemberg, Nachrichtenblatt der Landesdenkmalpflege, Volume 3, pp. 165–168, 2013
[BibTeX]
2012
- Multivariate Data Analysis Using Persistence-Based Filtering and Topological Signatures
B. Rieck, H. Mara, and H. Leitte
IEEE Transactions on Visualization and Computer Graphics, Volume 18, Number 12, pp. 2382–2391, 2012
[Author’s copy] • [BibTeX]
2011
- Smoothness Analysis of Subdivision Algorithms
B. Rieck
M.Sc. thesis, Heidelberg University, 2011
[Author’s copy] • [GitHub] • [BibTeX]