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Zusammenfassung

Diese Masterarbeit untersucht die Anwendung der Topologischen Datenanalyse (TDA) bei der Klassi-
�zierung multimodaler Mausgehirndaten in Narkose- und Schlafstadien. Wir verwenden Persistent Ho-
mology, ein zentrales Werkzeug der TDA, um topologische Merkmale in den Daten zu erkennen, die
sich aus Elektroenzephalographie (EEG), Elektromyographie (EMG) und Gehirnbildgebungsdaten zusam-
mensetzen.

Nach der Einführung in die mathematischen Grundlagen der TDA untersuchenwir die Daten explorativ.
Dabei berechnenwir Persistence Diagrams aus denDaten, welche die topologischenMerkmale zusammen-
fassen, sowie Functional Summaries, alternative Darstellungen zu den gängigen Persistence Diagrams.

Bei der Datenexploration �nden wir nur eine geringe Korrelation zwischen der Komplexität der Zeitrei-
hen und der topologischen Komplexität, beobachteten jedoch, wie sich die Daten topologisch zwischen
verschiedenen Narkose- und Schlafstadien unterscheiden.

Abschließend verwenden wir aus den Persistence Diagrams und Functional Summaries berechnete
Statistiken als Features für zwei Machine-Learning-Classi�er und vergleichen die Signi�kanz der Fea-
tures. Eine interessante Erkenntnis ist, dass die Adcock-Carlsson-Koordinaten, ein instabiles Functional
Summary, vermutlich das wichtigste Merkmal für die Klassi�zierung sind.

Die in dieser Masterarbeit verwendeten maschinellen Machine-Learning-Classi�er erzielen mit Persis-
tent Homology Features eine deutlich bessere Accuracy als mit traditionellen statistischen Features.
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Abstract

This master thesis explores the application of Topological Data Analysis (TDA) in the classi�cation of mul-
timodal mouse brain data into anesthesia and sleep stages. We use persistent homology, a key tool in TDA,
to detect topological features in the data, which consists of Electroencephalography (EEG), Electromyog-
raphy (EMG), and brain imaging datasets.

After introducing the mathematical foundations of TDA, we explored the topological characteristics of
the data. This involves converting it to persistence diagrams, which summarize the topological features in
data, and functional summaries, which are alternative depictions to the common persistence diagrams.

In the data exploration, we only �nd a slight correlation between time series complexity and topological
complexity, but observe how the data di�ers between di�erent anesthesia and sleep stages topologically.

Finally, we use statistics obtained from the persistence diagrams and functional summaries as features
for twomachine learning classi�ers, and compare the importance of the features. It is an interesting �nding
that arguably the most important feature in the classi�cation is Adcock-Carlsson coordinates, which is an
unstable summary statistic that can extract insight from small-scale topological features particularly well.

The machine learning classi�ers used in this master thesis perform signi�cantly better with features
obtained by persistent homology thanwith traditional statistical features, suggesting that TDA can provide
valuable insights into the complexities of brain activity and consciousness.
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1 Introduction

Analyzing the brain through the lens of data science promises unprecedented insights with profound real-
world applications. Data has helped us understand “brain and behavior” and develop treatments and in-
novative technologies already today. Researchers have, for instance, invented arti�cial voices for mute
people by analyzing their brain recordings [Doc21], which can potentially impact millions of lives in the
future. In a time where data sharing and open access are becoming increasingly important, the role of data
in neuroscience will only continue to grow. We just need the appropriate methods to analyze brain data
and �nd patterns the human eye cannot detect.

In recent years, machine learning models have gained popularity to handle large datasets. In machine
learning, often a crucial step is extracting relevant data features to feed into the model. Such features can,
for instance, be statistical features like themean or skewness of a time series. However, using statistical fea-
tures for machine learning can perform worse than using features from one recent data analysis approach,
Topological Data Analysis (TDA), particularly on complex brain data [Bil+21]. TDA o�ers an alternative
perspective to traditional data analysis and helps create features that capture essential information behind
data.

The core principle behind Topological DataAnalysis is the idea that behind all real-world data, there is an
underlying “intrinsic shape.” The core dogma of TDA is often cited as “data has shape, shape has meaning,
and meaning drives value” [EYCO23]. The intrinsic shape behind data is often directly visible when the
data is a 3D point cloud. The point cloud in Figure 1.1, for instance, shows a donut as its underlying
intrinsic shape. However, also image data and time series data (like EEG data) harbours intrinsic shapes,
as we will see in the course of this master thesis.

Figure 1.1 Data points showing a donut as an “intrinsic shape” [YM21].

TDA combines the century-old studies of topology and geometry to extract insights about the intrinsic
shapes behind today’s real-world data. Topology and geometry complement each other in examining
shapes. While geometry o�ers a quantitative perspective on shapes, focusing on measurements such as
distances, topology o�ers a qualitative perspective that focuses on the overall characteristics of shapes. In
topology, length measurements are not of interest, and shapes that we can continuously deform into each
other, such as through stretching and bending, are considered to be the same, regardless of their length
measurements. For example, as we can continuously transform a donut into a co�ee mug and back (as
shown in Figure 1.2), they are topologically equivalent.
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Figure 1.2 Co�ee mug transformed to a donut [Sch18].

Topological classi�cation is challenging and still an active area of research. Doing further research could,
however, be valuable in real-world applications: In [CZS03], the authors �nd that even honeybees do well
at discriminating non-equivalent shapes and poorly at discriminating topologically equivalent shapes. The
concept of “topological equivalence” seems quite relevant in capturing the nature of a shape we perceive.

For topological classi�cation, topologists examine topological invariants, those properties of shapes that
stay invariant under continuous deformations. Equivalent shapes, like a donut and a co�ee mug, share
their invariants. We can, therefore, learn about the topological identity of shapes by looking for their
topological invariants.

One example of a topological invariant is the number of holes of di�erent dimensions. A donut and a
co�ee mug have the same number of holes, with the most prominent hole visible in the center of the donut
and the handle of the co�ee mug representing just one of their holes. There are, in fact, �ve holes in co�ee
mugs or donuts, and we will learn later why.

Persistent homology, a fundamental tool of TDA, enables us to identify and analyze holes in real-world
data. It is a method that counts topological holes of all dimensions and evaluates their signi�cance using
geometric tools, allowing us to distinguish “persistent” large-scale holes from noise (See Figure 1.3).

Figure 1.3 Data points looking like circles each enclosing a tunnel (a type of hole). The tunnel in between the left
upper data points is larger and more persistent than the tunnel in between the right lower data points [LR21].

The data we will apply persistent homology to in this master thesis is mouse brain data. The mice were
anesthetized in one experiment and observed regarding their sleep behavior in another experiment. We
want to classify the data into anesthesia and sleep stages, respectively, by �nding topological holes in the
data and feeding properties of these holes into a machine learning model. While we are using mouse brain
data for this master thesis, similar methods could be applied to human brain data.

The data is multimodal, combining simultaneous Electroencephalography (EEG), Electromyography
(EMG), and brain imaging datasets. These data modalities have inherently di�erent strengths and short-
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comings; EEG and EMG data have a high temporal resolution but no spatial information, while brain
imaging data have a much lower temporal resolution but show spatial information. Therefore, we want to
combine the di�erent data modalities to bene�t from all of their strengths.

The goal of this master thesis will be to explore the e�ectiveness of TDA in classifying brain states
by comparing the performance of topological machine learning features with more traditional statistical
ones. Addionally, we want to compare the performance of di�erent functional summaries by assessing
their feature importances.

The data recorded on the anesthetized mice will be the focus of this master thesis. Observing the depth
of anesthesia with modern data analysis methods can be helpful, for example, for monitoring medical
operations.

Given that TDA has already had promising applications in medicine, such as in detecting breast cancer
[Nic+11], we aim to provide helpful insights into the stages of consciousness by analyzing the mouse brain
data with TDA.



4

2 Topological Foundations

2.1 Mathematical Perspectives on Shapes

Observing shapes has fueled our understanding of the world. We have the remarkable skill to recognize
patterns in shapes, which allows us to make sense of the things we see. However, instead of relying on our
intuition when observing shapes, we can also use mathematical models to study them, which has proven
invaluable throughout history.

“[The universe] cannot be read until we have learnt the language and become familiar with the characters
in which it is written. It is written in mathematical language, and the letters are triangles, circles and other
geometrical �gures, without which means it is humanly impossible to comprehend a single word.” [Galilei]
[LL06]

Geometricians like Galilei see shapes, such as circles, squares, and triangles, as the building blocks of
the universe. Each shape has speci�c characteristics, and the ensemble of shapes forms our universe.

Geometry dates back millennia [Ede14], and is concerned with measuring shapes by length, angles,
areas, curvature, and more. It focuses on the quantitative aspects of shapes and their local characteristics
[Am20], meaning characteristics that we can observe within a small shape region without considering the
overall shape. Fourier analysis, for instance, is a geometric tool useful to capture the outline of a shape
[Am20].

Topology, on the other hand, dates back only a few centuries [CVJ21] and examines qualitative, global
properties of shapes [Am20], so the overall structure and relationships between di�erent parts of a shape.
An example of a property re�ecting the overall shape structure is the number of holes and the connectivity
of the shape.

The observation of connectivity also marked the beginning of topology; in the 18th century, Leonhard
Euler introduced a form of the notable Königsberg bridge problem, depicted in Figure 2.1, and found that
the essential information in the problem was the connectivity of the islands, and not their exact positions
[CVJ21].

Figure 2.1 Euler’s representation of the Königsberg bridge problem with a graph, in which the nodes represent the
islands and the edges represent the bridges [Ven+21].
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Exact positions and length measurements do not play a role in topology. Topological shapes are �exible,
as if made from rubber. We can bend and stretch themwithout changing their topological identity. A donut
and a co�ee mug are distinct geometric objects, but as we can continuously deform them to each other,
they are indistinguishable in topology. The same holds for a circle and a square.

As this might seem peculiar to a reader not familiar with the foundations of topology, we will now get
an overview of the topological foundations relevant in this thesis. Speci�cally, we will introduce a theory
that studies connectivity and holes in shapes, called homology theory.

Later, we will introduce persistent homology, the primary tool in this master thesis, able to �nd holes in
real-world data using a combination of geometry and topology, enabling us to capture qualitative aspects
of data in a quantitative and computable way.

2.2 Topological spaces

Topology is a branch of mathematics that deals with shapes from a global, qualitative perspective. The
“shapes” that topology deals with are topological spaces, a type of mathematical spaces. In our de�nition,
a topological space is (like any mathematical space) a set - endowed with a structure g , which we call
topology. A topology is de�ned as a set of neighborhoods for each element (“point”) of - that satis�es
three axioms, formalizing a concept of closeness.

De�nition 2.2.1 (Topological space) Let - be a set, and the structure g be a collection of subsets, called
open sets, of - . g is called a topology and the ordered pair (- , g) is called a topological space if [Ede14]

i) ;,- 2 g ,
ii)* ,+ 2 g implies* \+ 2 g , and
iii) {*U | U 2 � } implies [U2�*U 2 g .

In words, the conditions are that both - and the empty set are open sets (and therefore part of the
topology), the intersection of any two open sets is an open set, and the the union of any family of open
sets is an open set.

Note. The terminology “open sets” is simply a name for the elements of the topology, and it might not
align exactly with the intuitive notion of openness.

In geometry, determining proximity between points relies on calculating distances. In topology, we
replace the notion of distance with the concept of neighborhoods [Moo08]. By de�ning collections of
“open sets”, we are specifying closeness (or “nearness”) in a topological space. The idea is: If every open
set that contains an element D 2 * also contains the element E 2 + , then D and E are “close” [Moo08].
Otherwise, they are not close.

Manifolds

Manifolds are a type of topological space and play a crucial role in almost every branch of mathematics,
as well as in physical theories like the string theory or the relativity theory [Lee00]. They also play a
signi�cant role in the theory behind TDA.



2 Topological Foundations

6

Figure 2.2 Examples of manifolds [Ken18]

Figure 2.2 shows some manifold examples. Some of the manifolds, particularly the cross surface and the
Klein bottle, do not seem to resemble those shapes we perceive in our daily lives. They do not �t into the
typical framework of Euclidean space. This is because manifolds are only required to look like í= locally.

Manifolds are topological spaces that are locally homeomorphic to a subset of í= [Lal14]. We call two
topological spaces locally homeomorphic if there is a local homeomorphism between them, which, intu-
itively, is a function that preserves local structure.

De�nition 2.2.2 (Local Homeomorphism) Let - and . be two spaces. A local homeomorphism between
X and Y is a continuous function f: X → Y, such that for every point G 2 - , there is an open neighborhood *
of G such that 5 |* : * ! 5 (* ) is a homeomorphism [Wil10].

Note. Recall that a homeomorphism is a bijective and continuous function whose inverse is also con-
tinuous [CVJ21].

To understand how a sphere, for example, is a manifold according to the above de�nition, let us intu-
itively compare it to the Earth’s surface, so to a globe.

Figure 2.3 Mapping a sphere to a plane [LA10].

If we want to map the surface of a globe to a plane
�
í2� as depicted in Figure 2.3, we cannot directly

project it with a homeomorphism. However, for any point on the globe (except the poles), we can consider
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a small region around that point. We can then use a homeomorphism to project this local region onto a
subset of the plane [LA10].

Such a globe is an example of a 2-manifold [Ede14], a manifold of dimension 2, also referred to as surface
[Lal14]. The dimension of a manifold is, in principle, the number of independent parameters necessary
to specify a point in the manifold [Lee00]. The sphere is a 2-manifold as each point on a sphere can be
uniquely speci�ed by latitude and longitude or, alternatively, with angular coordinates.

2.3 Homology Theory

Manifolds play an important role in TDA. The “manifold hypothesis” suggests that most real-world data
harbors an underlying manifold [FMN16], or at the very least, an intrinsic shape. If we were able to
distinguish the underlying manifolds, or shapes, of two data samples, this might help us classify the data
samples into di�erent classes.

Distinguishing Topological Shapes

In geometry, di�erentiating shapes like a circle and a square, which are distinct geometric shapes, seems
feasible. In topology, where a circle and a square are equivalent, di�erentiating shapes appears more
challenging.

The most precise way to distinguish topological shapes, or manifolds, is to classify them up to homeo-
morphism. Classifying up to homeomorphism means classifying shapes that we can transform into each
other with a homeomorphism, such as a sphere and a cube, into the same class and classifying other shapes
into di�erent classes. If two topological spaces - and . are of the same topological class, we generally
write - ⇡ . , and say they are “topologically equivalent” [Ede14].

In theory, we can prove that two manifolds are topologically equivalent relatively quickly by �nding an
explicit homeomorphism between them. It is feasible to show that we can continuously transform a donut
and a co�ee mug into each other [Cas06], and the same holds for a circle and a square [Cas06].

In practice, �nding an explicit homeomorphism between two arbitrary manifolds might be challenging,
even if such a homeomorphism exists. There is a whole theory dedicated to classifying manifolds of
dimension 2, which is the only dimension for which we know there is only a restricted number of classes
[Lal14]. Classifying manifolds of dimension 3 and 4 gets more complex, let alone dimension 5 or greater
[Har08]. For any dimension greater than 2, research on classifying manifolds up to homeomorphism is
not complete [Lal14], and it has been shown that there cannot be an algorithm for classifying manifolds
of dimension greater than 3 [VM05].

Invariants are those properties of manifolds that stay the same under homeomorphism, and one might
think that they are useful for topological classi�cation. One example of invariants are holes [CM21] and
will be de�ned later. However, if two manifolds have the same holes, they do not have to be of the same
class [Sti12], which makes holes useless for exact topological classi�cation. If we know that two manifolds
have the same hole structure, we do not get any new insights.

Therefore, we slightly change the question. Instead of asking if two manifolds are of the same class, we
only assess if they are of di�erent classes by examining their holes. If two manifolds have di�erent hole
structures, they must be of di�erent classes.

If the hole structures of two manifolds di�er particularly much, we could say that the manifolds di�er
much. In a data classi�cation problem, we might label two data samples with di�erent labels if their
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topological classes di�er particularly much and with the same label if their topological classes are similar
(even if not the same).

While we can prove on the theoretical side that looking at holes enables us to tell shapes apart, there
are also empirical reasons to look at them. There has been extensive research in psychology providing
evidence that topological holes are a very e�ective characteristic for people to discriminate shapes [Pom03]
[Wu+21]. This makes them attractive for classi�cation tasks in computer vision and related areas.

Now, what are holes? In fact, there is more than one de�nition of a hole. Just intuitively, something
has a 0-dimensional hole if it is connected, a 1-dimensional hole if you can put your �nger through it,
2-dimensional holes if it has holes like cheese, and it can also have higher-dimensional holes.

Di�erent tools exist to measure the hole structure of a manifold, and they may detect di�erent holes.
“Homotopy” and “homology” are both such tools [Hat02].

They are both ways of associating groups with topological spaces and detecting holes as characteristics
of these groups [Hat02]. The number of holes is counted by the rank of the “homotopy groups” and
“homology groups”, respectively [Hat02]. In this thesis, we will only introduce homology, as it is the
preferred tool in Topological Data Analysis due to its computational e�ciency [Car09].

The Number of Holes

Before de�ning holes in homology theory, we will consider the holes of some exemplary manifolds as an
intuition, namely a point, a circle, a torus (previously called donut), and a co�ee mug. The number of their
:-dimensional holes is denoted by V: .

Figure 2.4 Numbers of holes of a point, a circle, a torus and a co�ee mug [Dey14].

As shown in Figure 2.4, all of these manifolds count one 0-dimensional hole, called a connected compo-
nent. The circle also counts a 1-dimensional hole, called a tunnel. This seems plausible with our intuition
of “connected components” and “tunnels”.

The number of holes in the torus and the co�ee mug might be surprising initially. First, they contain
two tunnels, while intuitively, one might only see one.

Second, the torus and the co�ee mug also have a 2-dimensional hole, a void. This void is, in essence,
their surrounding, which we can consider as one giant void [Tau+20].

Note. The torus and the co�ee mug also have the exact same number of holes. This is because they
have the same topological class. As depicted in Figure 1.2, we can transform a torus into a co�ee mug with
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a homeomorphism by stretching out one half of the torus to become the cup and shrinking the other half
to become the handle, and the other way around [Lee00].

Simplicial complexes

To calculate the number of holes, we �rst triangulate the manifold, which is a way of discretizing it such
that the union of the discrete parts can reconstruct the manifold [Car09]; we then look for holes in such a
triangulation. The most prominent way of triangulating a manifold is to convert it to a simplicial complex,
made of small bricks called simplices [Qui13].

Figure 2.5 Two simplicial complexes. Simple simplicial complex (left) [c�09] and triangulation of a torus (right)
[Ag214].

Two examples of what such simplicial complexes can look like are given in Figure 2.5. On the right,
we see a triangulation of a torus; on the left, we see a simpler example of a simplicial complex. It might
be reminiscent of a graph. Indeed, simplicial complexes are a generalization of graphs [MHJ22], resulting
from adding triangles that link edges and tetrahedra that link triangles, and so on.

The elements of a simplicial complex are vertices, intervals, triangles, tetrahedra, and their higher-
dimensional counterparts, andwe call them:�simplices [EH10]. Figure 2.6 shows examples of:�simplices
for : = 0, 1, 2, 3. We will now introduce a range of de�nitions, formalizing :�simplices and simplicial
complexes and eventually leading to the de�nition of homology groups and, �nally, holes.

Figure 2.6 Simplices of dimension 0, 1, 2 and 3 [EH10]. We call these simplices vertex, interval, triangle and tetra-
hedron.

De�nition 2.3.1 (A�ne Combination, Convex Combination) Let � = {E0, E1, . . . , E: } ⇢ í= be a set
of points in í= . A point G =

Õ:
8=0 _8E8 is called a�ne combination of the E8 if

Õ:
8=0 _8 = 1. It is called a convex

combination if all _8 are additionally non-negative.

The set of a�ne combinations of points is called an a�ne hull, and the set of convex combinations is
called a convex hull [EH10].

De�nition 2.3.2 (A�ne Independent) � is called an a�ne independent if any two a�ne combinations,Õ
_8E8 and

Õ
`8E8 , are the same i� _8 = `8 for all 8 [EH10].
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Now, a simplex is the convex hull of such an a�ne indepenent set of vertices �.

De�nition 2.3.3 (k-simplex) Let � = {E0, E1, . . . , E: } be : + 1 a�ne independent points (“vertices”) in í= .
A k-simplex is the convex hull of � [EH10]. It is denoted by f or [E0, . . . Ê8 , . . . E: ], and has dimension : .
Therefore,

f =

(
:’
8=0

_8E8 | _8 æ 0,
:’
8=0

_8 = 1

)
⇢ í= . (2.1)

The convexity of the simplicial complex f means that we can express all points on the surface of and
inside f as a convex combination of the vertices of f , which is apparent in Figure 2.6. The a�ne inde-
pendence of the vertices implies that no three vertices are collinear and no four vertices coplanar [Gal23],
which we can also perceive in Figure 2.6.

De�nition 2.3.4 (Face) A face g of f is the convex hull of a non-empty subset of�. We denote this by g  f .
A face is called proper, denoted by g < f , if the subset is not � [EH10].

Therefore, one obtains a proper face by leaving out at least one vertex in a :�simplex.

De�nition 2.3.5 (Boundary) The boundary bdf of f is the union of all proper faces of f [EH10]. It consists
of all points for which all _8 = 0.

De�nition 2.3.6 (Interior) The interior int f of f is “everything else”, so int f = f � bdf [EH10].

Intuitively, the interior is the “inner area” of a simplex. It is the set of points of the simplex for which
all _8 > 0 [EH10].

Example 2.3.1 The boundary of a triangle consists of 3 connected intervals without the interior (the “inner
area”) of the triangle. Each of these intervals is a proper face of the triangle.

Taking a collection of simplices, we obtain a simplicial complex, which has dimension :<0G , with :<0G

being the maximum dimension of all :�simplices in the collection [EH10].

De�nition 2.3.7 (Simplicial Complex) A (geometric) simplicial complex  is a �nite collection of sim-
plices f that ful�ll the following conditions [EH10]:

i) the face condition: f 2  and g  f implies g 2  , and
ii) the intersection condition: f,f0 2  implies f \ f0 is either empty or a face of both f and f0.

Figure 2.7 Structure of simplices that is not a simplicial complex [Smi09].

To put the face and intersection condition into words, in a simplicial complex, all faces of its simplices
are also in the simplicial complex, and if two simplices intersect, then the intersection must be a face of
both simplices. While the simplicial complexes in Figure 2.5 ful�ll these conditions, Figure 2.7 shows a
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collection of simplices that is not a simplicial complex. The intersections of some of the simplices are not
faces at the same time.

Note. A “geometric” simplicial complex is the “geometric realization” of an “abstract” simplicial complex
in certain cases [Dey22]. Because geometric and abstract simplicial complexes are commonly handled
equivalently [Dey22], wewill drop thewords “abstract” and “geometric” and notmake a di�erence between
those two complexes.

Homology Groups

Once we have constructed a simplicial complex from our manifold, we can look for holes in the complex.
In simple words, holes are, as we might expect, “empty spaces”. However, de�ning them mathematically
and �nding them computationally is not as simple, such that we instead de�ne and look for their duals:
“non-bounding cycles” [Zom05]. The numbers of holes and non-bounding cycles of a simplicial complex
are the same [Zom05], and these numbers are what we are eventually interested in.

Returning to our example of a triangulated torus, its two non-bounding cycles of dimension one are
shown in Figure 2.8. It is becoming clearer why, as we observed in Figure 2.4, a torus has two holes (and,
equivalently, non-bounding cycles) of dimension 1 and not just one, as we might expect.

Figure 2.8 1-dimensional non-bounding cycles of a torus [Pel+07].

Non-bounding cycles (and therefore also holes) are counted by the rank of so-called homology groups.
To de�ne homology groups, we rely on the concept of boundary operators.

A function thatmaps combinations of triangles to combinations of intervals is an example of a “boundary
operator”. This boundary operator is of dimension 2, but boundary operators exist for all dimensions.

More generally, boundary operators map so-called chain groups, consisting of collections of :�simplices
(so-called :�chains), to lower-dimensional chain groups.

De�nition 2.3.8 (:�chains) Let  be a simplicial complex. A :-chain 2 is a formal sum 2 =
Õ=

8=1 08f8 of
:-simplices f8 , 8 = 1, ...,=, in  [EH10].

This formal sum is not to be understood as an arithmetic operation; it rather expresses a way of com-
bining :�simplices. Its coe�cients 08 indicate how often a simplex appears in the combination [Car13].
We often use module 2 coe�cients in practice, so either 0 or 1 [EH10].

De�nition 2.3.9 (Chain Group) For each: , all possible:-chains in , together with the addition operation,
form the group of :-chains, which we denote as +: [EH10].

Recall that what we want to achieve by de�ning chain groups is to give a formal de�nition of boundary
operators.
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De�nition 2.3.10 (:�th Boundary Operator) The :�th boundary operator, denoted by m: , is a linear
transformation which maps from a chain group +: to the lower-dimensional chain group +:�1 [EH10]. The
boundary operator applied on a single :-simplex f = [E0, . . . , E: ] is given by the formal sum [Buc18]

m: ( [E0, . . . , E: ]) =
:’
8=0

(�1)8 [E0, . . . Ê8 , . . . E: ] , (2.2)

where [E0, . . . Ê8 , . . . E: ] denotes the (: � 1) simplex obtained by removing E8 .

Due to its linearity, the boundary operator applied on combinations of :�simplices (:�chains) is a
combination of boundary operators applied on the simplices: m: (

Õ
08f8) =

Õ
08m: (f8).

Note. After applying the boundary operator to a :�simplex, it is common for some resulting (: � 1)-
simplices to have a negative sign. This negative sign reverses the “orientation” of the : � 1�simplices.
Orientation is an important concept in topology. Visually expressed by arrows in a simplex as in Figure
2.9, orientation determines the path one would traverse if walking along the simplex [ST80].

Example 2.3.2 (Boundary Map of a Triangle) Figure 2.9 shows the 1st and 2nd boundary operator ap-
plied to an oriented interval [E0, E1] and an oriented triangle [E0, E1, E2], respectively. We obtain m1 ( [E0, E1]) =
[E1] � [E0] and m2 ( [E0, E1, E2]) = [E1, E2] � [E0, E2] + [E0, E1] [Buc18]. If we inverted the orientation of [E0, E1],
we would obtain m1 (� [E0, E1]) = [E0] � [E1] [EH10].

Figure 2.9 Examples of the boundary operator applied on an oriented interval and an oriented triangle [Buc18].

The output of a boundary operator applied to a : + 1-chain is a :�chain, a formal sum of boundaries
of simplices in the : + 1�chain, collectively called the “:�boundary” of the : + 1�chain. The output of
the boundary operator applied to the group of : + 1�chains (the “chain group” +:+1), again forms a group
called boundary group.

De�nition 2.3.11 (Boundary Group) We de�ne the boundary group of dimension: as ⌫: ( ) := Im (m:+1)
[CVJ21].

The elements of the boundary group are called :�boundaries.

Sometimes, the : + 1�th boundary operator applied to : + 1�chains yields zero. For instance, the output
of a boundary operator applied to a vertex is, by de�nition, zero [EH10], and the same holds for a collection
of vertices. For higher-dimensional : +1�chains, an example in which the output of the : +1�th boundary
operator becomes zero is given in Example 2.3.3.

We refer to:+1�chains onwhich the:+1�th boundary operator yields zero as “cycles”, and collectively,
they form a “cycle group”.

De�nition 2.3.12 (Cycle Group) We de�ne the :-th cycle group /: ( ) as /: ( ) := Ker (m: ) [CVJ21].

Example 2.3.3 The triangle in Figure 2.9 is a cycle: m2 ( [E0, E1, E2]) = [E1, E2] � [E0, E2] + [E0, E1] = 0.
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Now, every :�boundary is also a :�cycle. This is stated by the following theorem.

Theorem 2.3.13 (Fundamental Lemma of Homology) m: � m:+1 = 0, for all : [EH10].

A proof of this theorem can be found in [Car13].

The statement that the output of the : + 1�th boundary operator (a :�boundary) is also a :�cycle is
shown by the fact that when applying, in turn, the :�th boundary operator m: on this output, we receive
zero, meaning that it belongs to the kernel of m: . This means that every boundary is also a cycle.

The converse, that every cycle is also a boundary, is not true; it is simple to �nd a counter-example
[Tan17]. Such cycles are called non-bounding cycles, which is the structure we are looking for in order to
count holes.

Figure 2.10 Non-bounding 1-cycles (black) and bounding 1-cycle (pink) of a torus [Pel+07].

Example 2.3.4 (Bounding Cycles, Non-Bounding Cycles) Figure 2.10 shows the two previously seen
non-bounding 1�cycles (black) on the triangulation of a torus. Now, it also shows an example of a bound-
ing 1�cycle (pink). The pink cycle is bounding as it is the boundary of a combination of triangles.

Non-bounding cycles add to the number of holes in a simplicial complex, bounding cycles do not. We
can count the number of non-bounding cycles by the rank of homology groups, which are just the groups
of non-bounding :�cycles that are not :�boundaries at the same time. We can express such a homology
group �: ( ) as the quotient group of the boundary group ⌫: ( ) and the cycle group /: ( ).

De�nition 2.3.14 (Normal Subgroup) Let ⌧ be a group and # be a subgroup of ⌧ . If 6#6�1 = # for all
6 2 ⌧ , # is called a normal subgroup [Lee00]. Here, 6# = {6= : = 2 # }, and #6 = {=6 : = 2 # } [Lee00].

De�nition 2.3.15 (Quotient Group) Let ⌧ be a group and # be a normal subgroup of ⌧ . Then, we de�ne
the quotient group as ⌧/# := {6# | 6 2 ⌧} [Lee00].

The :-th homology group is a quotient group de�ned by removing (the equivalence classes of) :�cycles
that are also :�boundaries.

De�nition 2.3.16 (:�th Homology Group) Let  be a simplicial complex. The :�th homology group
�: ( ) is de�ned as �: ( ) := /: ( )/⌫: ( ) = Ker m:/Im m:+1.[Lee00].

The elements of a homology group �: ( ) are equivalence classes, where the equivalence relation is
called homology [Car13]. Each equivalence class consists of non-bounding cycles that we can continuously
deform into each other. In Figure 2.10, the two black non-bounding cycles are just representatives of their
homology class. They can also arbitrarily be deformed continuously while still representing the same hole.

Betti numbers, the rank of the homology groups, count the numbers of non-bounding cycles and, simul-
taneously, of holes.
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De�nition 2.3.17 (Betti Number) Let  be a simplicial complex. The :�th Betti number of  , V: ( ), is
the rank of �: ( ) [EH10].

As H: = Z:/B: , Betti numbers can be calculated as [CVJ21]

rankH: = rank/: � rank B: . (2.3)

The 0�th Betti number V0 counts the number of distinct connected components (which are 0�dimensional
holes) of a simplicial complex [ELZ02].

The 1�st Betti number V1 counts the number of tunnels, which are 1�dimensional holes, and the 2�nd
Betti number V2 counts the number of voids, which are 2�dimensional holes [ELZ02].

Betti numbers count both non-bounding cycles and holes in a simplicial complex. They are an important
quantity that helps classify manifolds into di�erent topological classes. Note that the numbers V: ( ),
: = 0, 1, 2, we looked at in Figure 2.4 are Betti numbers.

Why the Number of Holes Distinguishes Shapes

To understand why two manifolds with a di�erent number of holes are not topologically equivalent, we
will rely on a weaker form of equivalence, called homotopy equivalence, which can still help distinguish
topological features.

Homotopy equivalence will also be a crucial part of later understanding why persistent homology, the
primary tool of this master thesis, works.

Intuitively, two manifolds - and . are homotopy equivalent if there is a way to transform - into . and
. into - by homotopic functions.

De�nition 2.3.18 (Homotopic Functions) Let - ,. be two topological spaces. Two continuous functions
5 ,6 : - ! . are homotopic if there is a continuous function � between [0, 1] ⇥- and . , such that � (0, G) =
5 (G) and � (1, G) = 6(G) for all G in - . We denote homotopic functions by 5 � 6 [Car09].

Here, the interval [0, 1] can be understood as a parameter measuring the progress of the continuous
transformation. At (0, G), � represents the initial state of the transformation, at (1, G), it represents the
�nal state.

De�nition 2.3.19 (Homotopy Equivalence) Let - ,. be two topological spaces. A map 5 : - ! . is
called a homotopy equivalence if there is another map 6 : . ! - such that 5 and 6 ful�ll the following
conditions [Car09]

i) 5 � 6 and the identity map on . (id. : . ! . ) are homotopic
ii) 6 � 5 and the identity map on - (id- : - ! - ) are homotopic.

While topological equivalence means that one map 5 can transform a manifold - to a manifold . and
back, in homotopy equivalence, we introduce another map 6. More precisely, while in topological equiva-
lence, 5 � 5 �1 is the identity map from . to . and 5 �1 � 5 is the identity map from - to - , in homotopy
equivalence, 6 serves as a substitute for 5 �1. This makes homotopy equivalence a weaker equivalence
relation than topological equivalence.

We can show that if two manifolds have di�erent Betti numbers, they are not homotopy equivalent, as
a direct consequence of Theorem 2.3.20.

Theorem 2.3.20 If two manifolds are homotopy equivalent, their Betti numbers are the same [Car09].
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A proof for this theorem can be found in [Hat02] and [RV07]. The theorem is, essentially, a corollary of
the functoriality of homology [Hat02]. Homology is “functorial”, which means that it does not just assign a
group�: (- ) to each topological space - , it also assigns an induced map 5⇤ : �: (- ) ! �: (. ) to each map
5 : - ! . , and preserves important properties of the of the topological space and the map, respectively
[Hat02].

Now the groups �: (- ) and �: (. ) are the same for two homotopy equivalent spaces - and . (which is
stated in Theorem 2.3.20). It follows that if two manifolds - and . have di�erent homology groups �: (- )
and�: (. ) and therefore di�erent Betti numbers, they are not homotopy equivalent. As topological equiv-
alence is stronger than homotopy equivalence, we then also know that - and . are not topologically
equivalent. We can conclude that even though we might not know that two spaces are of the same topo-
logical class if they have the same Betti numbers, we do know that they are of di�erent classes if they have
di�erent Betti numbers.

In a data classi�cation problem, we could identify if the manifolds behind two data samples are of
di�erent topological classes. In a geometric setting, we can then ask the question of how di�erent their
topological classes are in order to classify data samples that harbour similar manifolds into the same class
and data samples with very di�erent manifolds into di�erent classes.

Cubical Complexes

We will see that simplicial complexes are suitable for analyzing time series data. For image data, cubical
complexes can be more suitable. Betti numbers do not depend on the type of triangulation [RV07], but the
choice of triangulation can make a di�erence regarding computational e�ciency.

Figure 2.11 Exemplary cubical complex [GDJM11].

While simplicial complexes consist of points, intervals, triangles, tetrahedra, and their higher-dimensional
counterparts, cubical complexes consist of points, line segments, squares, cubes, and n-dimensional coun-
terparts. Figure 2.11 shows an example of a cubical complex.

Cubical complexes provide a perfect �t to the inherent cubical structure of images, which consist of
pixels [KMM04]. To understand cubical complexes, let us �rst de�ne elementary intervals and cubes.

De�nition 2.3.21 (Elementary Interval) For some ; 2 ö, the corresponding elementary interval is one of
the two closed intervals � ⇢ í [KMM04]

� = [;, ; + 1] or � = [;, ;] . (2.4)
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Elementary cubes are the the product of elementary intervals. They are the pendant to simplices in
cubical homology theory and the building blocks of cubical complexes [KMM04].

De�nition 2.3.22 (Elementary Cube) An elementary cube & is the �nite product of elementary intervals
�1, · · · , �# [KMM04]

& = �1 ⇥ · · · ⇥ �# ⇢ í# . (2.5)

The dimension# of an elementary cube is the number of non-degenerate components it contains, where
non-degenerate intervals are those elementary intervals that are those of the form [;, ; + 1] [KMM04].

Cubical sets are �nite unions of elementary cubes [KMM04]. We can de�ne boundary operators and
chain groups +: on a cubical set � similarly as in simplicial homology theory [KMM04]. The boundary
operators m: are maps that map chain groups to lower-dimensional chain groups again.

Finally, cubical complexes are de�ned as follows.

De�nition 2.3.23 (Cubical Complex) The cubical (chain) complex for a cubical set � ⇢ í# is [KMM04]

C(�) := {+: (�), m: }:2ö . (2.6)

We can de�ne homology groups of a cubical set- similarly as we de�ned them for simplicial complexes:
As the quotient groups �: (- ) := /: (�)/⌫: (�), where /: (�) := ker m: and ⌫: (�) := im m:+1 [KMM04].

Summing Up

In this chapter, we learned how to identify holes in the underlying manifolds behind real-world data.
Manifolds can have holes of various dimensions, and the holes of the �rst three dimensions are called
connected components, tunnels, and voids.

The most prominent method for detecting such holes in a manifold is to discretize the manifolds to a
simplicial or cubical complex. In such complexes, we do not look for holes (“empty spaces”) directly, but
we look for a closely related structure with the same amount as holes: Non-bounding cycles.

We aim to detect non-bounding cycles in the manifolds behind our brain data, which will help us classify
the data into di�erent consciousness stages, as di�erent Betti numbers of such manifolds indicate di�erent
topological classes of the manifolds.

We have seen some examples of what manifolds can look like. However, considering image or time
series data, the question of what manifold may lie behind the data is not intuitive. The next chapter will
explore a way to detect non-bounding cycles in real-world data.

2.4 Persistent Homology - Finding Holes in Real-Word Data

So far, we have learned a method for counting holes in triangulations of topological spaces like manifolds.
However, the data we deal with in this thesis is not an abstract and idealistic manifold. We are dealing
with real-world data.

In the theory of Topological Data Analysis, all real-world data, at least when converted to point clouds,
may noisily resemble some underlying manifold or, more generally, some underlying shape.

For instance, our real-world data ⇡ might be a point cloud concentrated very near a circle, like in
Figure 2.12. The topological properties of the underlying manifold- , in this case a circle, provide valuable
information about the data.
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Figure 2.12 Data sampled from a circle with little noise (left) and much noise (right).

The underlying manifold behind data points is not always obvious. There are approaches that aim
to identify the manifolds behind data, summarized as “Manifold Learning” approaches [Ize12]. We will,
however, use a direct way to analyze the data’s intrinsic topological structure without explicitly identifying
the underlying manifold. Instead of �nding such a manifold and converting it into a simplicial complex,
we want to generate a complex on our data points directly.

There are several ways to construct complexes from data. For constructing, for example, a so-called Čech
complex from data points, we �rst de�ne a parameter n (n � 0). We de�ne the vertices of our complex to
be our data points, and we now imagine open balls with radius n around each vertex. If the n�balls around
two vertices have a common point of intersection, we construct an interval between the vertices. If the
n�balls around three vertices have a common point of intersection, we construct a triangle between the
vertices, and so on.

De�nition 2.4.1 (Čech Complex) Let ⇡ be a point cloud. For a given n > 0, we de�ne balls ⌫n (I8) around
each data point I8 2 ⇡ , which we simultaneously de�ne as vertices. Then, the Čech complex is a simplicial
complex constructed by creating a :-simplex for every (:+1)-tuple of intersecting balls {⌫(I8 , n)}:+18=1 [NSW08]
[CVJ21]. We denote the Čech complex by ⇠Čech(⇡, n).

As the Čech complex can be computationally expensive, we often use an alternative which is, in a sense,
an approximation of the Čech complex: The Vietoris-Rips complex [Car09].

The idea of constructing a Vietoris-Rips complex is similar to constructing aČech complex: We construct
open n�balls around all data points, which we de�ne as our vertices. If two vertices are less than 2n apart,
such that the n�balls around them touch, we connect them with an interval. If three vertices are pairwise
close enough, we construct a triangle on them.

The di�erence to the Čech complex is that to construct a triangle on three vertices, the balls around
them do not need one common point of intersection; they only need to intersect pairwise (and similarly
for higher dimensions). Figure 2.13 shows an example of a Vietoris-Rips complex constructed on a point
cloud that looks di�erent than the respective Čech complex. Note that the �ltration parameter is denoted
by U here, not n .

De�nition 2.4.2 (Vietoris-Rips Complex) Let ⇡ be a point cloud. For a given n > 0. we de�ne the point
I8 2 ⇡ as the vertices of a simplicial complex. For : � 1, de�ne :�simplices between vertices {I0, . . . , I: } i�,
for 0  8 < 9  : [CVJ21],

3
�
I8 , I 9

�
 2n . (2.7)

We call this simplicial complex the Vietoris-Rips complex and denote it by ⇠VR(⇡, n).
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Figure 2.13 Čech complex ⇠Čech (⇡,U) (left) and Vietoris-Rips complex ⇠VR (⇡,U) (right) constructed on a point
cloud D [CM21].

Filtrations

The most critical question for constructing a simplicial complex from a point cloud is how to set the
threshold of the parameter n . It has been found that this is a “very hard, if not unsolvable problem”
[Car19].

In 1999, [Rob99] introduced the idea of persistence, later extended by [ELZ02]. Instead of choosing just
one threshold for the parameter n , we observe how a simplicial complex evolves over a range of parameter
values.

The idea is that those holes that persist over a larger range of parameters are more signi�cant than those
holes that persist only over a small range of parameters [Klo10]. More persistent holes exist over a larger
subsequence of simplicial complexes we obtain when varying n , which we call a �ltration.

De�nition 2.4.3 (Filtration) A �ltration on a simplicial complex  is a nested sequence of simplicial com-
plexes

; = K0 ✓ K1 ✓ · · · ✓ K<�1 ✓ K< = K, (2.8)

in which  8 is a subcomplex of  8+1 and each  8 a subcomplex of  [CVJ21].

Figure 2.14 Vietoris-Rips �ltration of a point cloud [Mun17].
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We receive such a �ltration, an increasing sequence of complexes, by de�ning a sequence of �ltration
parameter values {n8}<8=0 and de�ning complexes for all parameter values. Figure 2.14 shows an exemplary
Vietoris-Rips �ltration constructed on a point cloud. Each of the seven subcomplexes in the �ltration has
a di�erent number of holes.

The Vietoris-Rips �ltration and the Čech �ltration are particularly suitable for point clouds. We will
later see how to convert time series to point clouds to be able to apply these �ltrations on time series.
Another, more direct way to construct a �ltration from a time series is to connect all points that lie in the
sublevel set to simplices. It is called sublevel set �ltration.

De�nition 2.4.4 (Sublevel Set) Given a space - and a real-valued function 5 : - ! í, the sublevel set for
0 2 í consists of all the points in - with 5 (G)  0 [Mak+18].

A �ltration particularly suitable for images is called radial �ltration [Tau+20]. In a radial �ltration, a
greyscale value is assigned to each pixel of a binary image based on a reference pixel called the “center” and
a �ltration parameter, the “radius.” If the binary pixel is active and lies within a ball de�ned by the center
and the radius, then the assigned value equals the distance to the center. Otherwise, the assigned value
equals the maximum distance between any pixel of the image and the center pixel, plus one [Tau+20].

Persistence Diagrams

In persistent homology, we are interested in the parameter range during which each hole persists. Those
holes that have the property that they persist over a larger parameter range also appear more signi�cant
in the data [Klo10].

Holes can be “born” or “die” in a �ltration, in the beginning n8 and in the end n 9 of the parameter range.
In dimension 0, for example, a hole is born when a new connected component arises, and it dies when two
connected components merge into one [Dey22].

We can put the birth-death tuples
�
n8 , n 9

�
, 8  9 , into a diagram in which each tuple represents a hole.

This diagram is called the persistence diagram [Mar17], and the the distance of a hole to the diagram
diagonal is called the persistence; again, persistence is a measure of the signi�cance of the hole in the data
[Dey22].

Figure 2.15 Persistence diagram of the �ltration in Figure 2.14 [Mun17].

Figure 2.15 shows the persistence diagramwith the birth-death tuples of 1-dimensional holes (“tunnels”)
of the �ltration in Figure 2.14. We observe that one hole, themost prominent hole, is clearly distinguishable
from less persistent holes in the diagram.

This hole is the hole in the center of the large, central circle in Figure 2.14. We observe that it exists
over a particularly long range of the �ltration parameter n (called A in the �gure). The tunnel in the center
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of the smaller circle persists over a smaller range of the �ltration parameter, and additional tunnels might
appear over such a short parameter range that they could be considered noise.

Figure 2.16 shows another example of persistence diagrams. It shows the persistence diagrams of the
two circle point clouds shown in Figure 2.12, showing holes of dimensions 0, 1 and 2. Again, the prominent
tunnel of the circle (in green) is clearly distinguishable from other holes.

Figure 2.16 Persistence diagrams of a point cloud sampled from a circle with little (left) and much (right) noise.

Why Persistent Homology Works

If our data points ⇡ are sampled from a manifold - , how do we know that persistent homology re�ects
the homology of -? In fact, this depends on how densely we sampled ⇡ .

Based on previous work [CSEH07], Niyogi et al. provide conditions under which we can conclude
with high con�dence that the homology of a Čech complex constructed on data points ⇡ sampled from a
manifold - equals the homology of - [NSW08].

Apart from conditions on the underlying manifold - , these conditions include an estimation of how
dense we need to sample data points and an optimal range of the �ltration parameter n [NSW08].

The contribution of Niyogi et al. is to show that if data points ⇡ = {I1, . . . , I=} are sampled su�ciently
densely (but noisily) from a manifold - , there is such a range of n for which the homology of the union of
open n�balls around the data points,

–
I8 2⇡ ⌫n (I8), equals the homology of the manifold - [NSW08].

How does this help us? In fact, we need an additional theorem to make use of this knowledge, the so-
called Nerve Lemma. By this lemma, we learn that the homology of the Čech complex is the same as the
homology of

–
I8 2⇡ ⌫n (I8). Therefore, by combining the Nerve Lemma with the �ndings of Niyogi et al.,

we know that the Čech complex can reconstruct the homology of the original manifold - .

To understand theNerve Lemma, we need to have a newperspective onČech complexes. A newperspec-
tive on Čech complexes, which consist of :�simplices that are created for each : +1�tuples of intersecting
⌫n (I8)), is that they are the nerves of {⌫n (I8)}I8 2⇡ [NSW08].

De�nition 2.4.5 (Nerve) Let {*1, . . . ,*=} be a �nite collection of sets. Then, the nerve of {*1, . . . ,*=} is a
simplicial complex constructed by creating a :-simplex for each non-empty intersection of : + 1 distinct sets
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from {*1, . . . ,*=}. More precisely, a :-simplex is formed for every subset
�
*80,*81, . . . ,*8:

 
of {*1, . . . ,*=}

such that*80 \*81 \ · · · \*8: < ;. [CVJ21] [NSW08].

To understand the Nerve Lemma, we also need to know the concept of “open coverings”. Open coverings
are collections of open subsets of some set � whose union reconstruct � [CVJ21].

Theorem 2.4.6 (Nerve Lemma) Let {*1, . . . ,*=} be an open covering of �, a subset of í= . If each inter-
section of the *8 is either empty or contractible, then the nerve of {*1, . . . ,*=} is homotopy equivalent to �
[CVJ21].

Note that in Theorem 2.4.6, contractible refers to the property of a form that makes us able to continu-
ously deform (or “contract”) the form to a point within itself [Car09].

The n-balls ⌫n (I8), I8 2 ⇡ , form an open covering of
–

I8 2⇡ ⌫n (I8) [CVJ21]. Their intersections are
contractible as they are convex [NSW08], and any convex set in í= is contractible to a point [ALS19].
With the Čech complex as the nerve of the ⌫n (I8), I8 2 ⇡ , we can apply the Nerve Lemma to our setting.

We know that the nerve of open n-balls around some data points ⇡ is a Čech complex, and therefore
can conclude from the Nerve Lemma that the Čech complex is homotopy equivalent to the union of the
n-balls,

–
I8 2⇡ ⌫n (I8). Recall that homotopy equivalence, which we de�ned in Section 2.2, implies the same

Betti numbers, so we can conclude that the Čech complex and
–

I8 2⇡ ⌫n (I8) have the same homology.

With the work of Niyogi et al. [NSW08], we can now infer that there is a range of n for which the Čech
complex constructed from open n�balls around data points ⇡ , which are sampled from a manifold - , has
the same homology as the original manifold - (if the data points ⇡ are sampled densely enough). [ALS13]
proves that the same result for the Vietoris-Rips complex.

Recall that �nding ideal parameter values of n in practice is a “hard, if not unsolvable problem”. In
persistent homology, we, therefore, choose a large range of n that will likely include such “ideal” parameter
values. Those holes with a large persistence are more likely to fall into the suitable range of n , which is
one reason they are signi�cant. In contrast, holes with a smaller persistence are less likely to fall into a
suitable range of n , such that it could be reasonable to exclude such non-persistent holes from our analysis
and label them as “noise”.

Persistent Homology - Combining Geometry and Topology

Unlike manifolds, real-world data is not as �exible as if made from rubber. Imagine our data points ⇡ to be
a time series, potentially an EEG recording. In such a recording, the size of a �uctuation does play a role.
Additionally, small-scale �uctuations can play a role in EEG, as we can infer neuroscienti�c knowledge
from them, so we do not want to discard them.

We will see in Section 5.2 how to construct a Vietoris-Rips �ltration from a time series. For now, we
can assume that small �uctuations in a time series tend to be re�ected in small-persistence holes in the
respective persistence diagram.

Therefore, it is a natural question to ask if it is a good strategy to exclude small-scale holes (“noise” )
from our analysis. Traditionally, research that has applied persistent homology for data analysis tended
to focus on large-scale holes [Pat+18], such that excluding noise is a traditional and well-explored way.
Small-scale holes likely do not encode any important topological information, as it is unlikely they re�ect
a hole that is present in the manifold - behind our data ⇡ .
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However, persistent homology inherently combines topology and geometry. It measures the geometric
size of holes behind data (and can additionally detect geometric quantities such as curvature and convexity
[TMO22]) and counts large-scale holes that encode topological, qualitative information.

As said, small-scale holes will likely not encode any topological information of the underlying manifold
behind the data. However, according to [Pat+18], they can re�ect local, geometric information of the data
that might play an important role in data analysis.

Figure 2.17 Flock of birds [AM21].

A picture of a �ock of birds, as shown in Figure 2.17, contains both local and global information. We
can infer knowledge about the whole �ock from global information, and about the single birds in the �ock
from local information. In a data analysis problem, solely concentrating on global information, which
is re�ected in large-scale holes in persistence diagrams, might limit our understanding of the intricate
structures within the data. It might therefore be a good strategy not to exclude small-scale holes from our
analysis.

2.5 Stability

The goal of this master thesis will be to classify data samples ⇡1,⇡2, ... into consciousness stages, such
as di�erent depths of anesthesia. Two brain recordings ⇡1 and ⇡2 that are very similar from a purely
geometric point of view, such that the (geometric) distance between them is very small, likely come from
the same anesthesia stage and should be classi�ed into the same class. As our classi�cation is based on
persistence diagrams, it would be therefore desirable for persistence diagrams to be very similar for any
two data samples that are geometrically very similar.

When measuring the geometric similarity of data samples by the so-called Gromov-Hausdor� distance
3⌧� (·), a geometric distance [M0́8] which we refrain from de�ning precisely, we indeed know that the
respective persistence diagrams hold such a desirable property. This property is called the stability of
persistence diagrams.

Before introducing the notion of stability, we will introduce the distances by which we measure topo-
logical similarity between persistence diagrams.

Topological Distances

Two common topological distances, which compute a topological similarity between persistence diagrams,
are the Bottleneck distance and theWasserstein distance.

k (G,~)k1 = max{|G |, |~ |} denotes the usual !1�norm.
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De�nition 2.5.1 (Wasserstein Distance) For ? > 0, de�ne the ?�Wasserstein distance between two per-
sistence diagrams D1 and D2 as [Tau+20][CVJ21]

3W(D1,D2) = inf
W

 ’
G2D1

kG � W (G)k?1

!1/?
, (2.9)

W are bijections from D1 to D2. We also include the points on the diagonals of D1 and D2 such that D1
and D2 do not need to have the same number of points [KMN17].

Conceptually, the Wasserstein distance measures the minimal cost of moving the points in D1 to align
with those in D2.

For ? ! 1, we call the ?�Wasserstein distance Bottleneck distance.

De�nition 2.5.2 (Bottleneck Distance) The Bottleneck distance is the ?�Wasserstein distance for ? ! 1
[CVJ21]

3B(D1,D2) = inf
W

sup
G

kG � W (G)k1. (2.10)

The Bottleneck distance has a limitation in that it is solely in�uenced by the largest distance between
pairs of points and does not consider the proximity of the other point pairs [CVJ21].

Stability of Persistence Diagrams

The �rst who studied the stability of persistence diagrams (with respect to the Bottleneck distance) were
Cohen-Steiner, Edelsbrunner, and Harer [Cha+09]. Subsequently, several stability theorems for persistent
homology were found. The following theorem is the most relevant one for our purpose. In the following,
we can imagine - and . to be the metric spaces in which two samples of our data lie.

Theorem 2.5.3 (Stability of Persistence Diagrams) Let - and . be two compact metric spaces, Filt(- )
and Filt(. ) Vietoris-Rips or Čech �ltrations built on top - and . , and let D Filt(- ) D Filt(. ) be the corre-
sponding persistence diagrams. Then, [CVJ21]

3⌫ (D Filt(- )),D Filt(- )))  23⌧� (- ,. ) . (2.11)

This theorem states that the Bottleneck distance between the persistence diagrams of the �ltrations on
- and . is at most twice the Gromov-Hausdor� distance between - and . , and, therefore, establishes a
relationship between a topological and a geometric distance.

We often call this theorem the “stability theorem” because it shows that small changes between two data
samples result in small changes in the corresponding persistence diagram. The stability theorem implies
that the persistence diagram computed from input data will not change drastically when perturbing the
data (for example, with minor noise). This is important because it makes TDA a robust tool for analyzing
data, which often contains noise.

Note. Theorem 2.5.3 is a stability result for the Vietoris-Rips (and Čech) �ltration, which we will use
for our EEG and EMG data. For the image data, we use radial �ltration. Persistence diagrams from a radial
�ltration are less robust in practical applications than persistence diagrams from Vietoris-Rips �ltrations
[Tur+21].

Most stability results involve the Bottleneck distance between persistence diagrams, but there are also
results using ?�Wasserstein distances, ? < 1 [ST23]. Note that ?-Wasserstein stability results, ? < 1,
are weaker than stability results for the Bottleneck distance [BHG22].
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Stability of Functional Summaries

In the next chapter, we will list functional summaries, mapping persistence diagrams to alternative repre-
sentations or statistics. Many of these functional summaries are shown to be stable with respect to small
perturbations in the original data ⇡ .

However, the stability of persistence diagrams does not guarantee the stability of all functional sum-
maries. A functional summary could rely on features that can change dramaticallywith small perturbations
of the persistence diagram, which would mean that the functional summary is not stable with respect to
the persistence diagram. We will see that not all of the functional summaries we are using are stable.

The fact that we are using stable as well as unstable functional summaries might, however, not be a
direct disadvantage for our classi�cation task and could actually turn out to be advantageous. As men-
tioned in Section 5.4, including noise that might encode local geometric information into our analysis can
turn out to be valuable. There is no particular reason to assume such noise to be less important than
persistent points in machine learning tasks [CVJ21]. When only using stable functional summaries, we
might fail to distinguish similar datasets on large scales and can better be di�erentiated on smaller scales
[Ali+23]. Combining functional summaries that are sensitive to noise (local information) with globally
stable summaries might be a good strategy.
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3 Functional Summaries

As our data is of a relatively small size, which traditional machine learning models usually can handle bet-
ter than deep learning models, we decided to use traditional machine learning models for our classi�cation
task. This poses a challenge when dealing with persistence diagrams, which are inherently (multi-)sets
[Tau+20]. While some machine learning models can handle persistence diagrams directly [HMR21], tra-
ditional classi�ers commonly require input data in tabular format [Ped+11].

Functional summaries are functions that map persistence diagrams to vectors [Tau+20], creating fea-
tures that are processable by traditional machine learning models. No summary statistic captures all char-
acteristics of a persistence diagram, and they might capture complementary characteristics. This chapter,
therefore, introduces a variety of functional summaries collectively aimed at summarizing the topologi-
cal characteristics of our data. To assess the contributions of individual summaries to our classi�cation
accuracy, we will compare their feature importance later in Section 6.2.

Some functional summaries map persistence diagrams directly to scalars or small vectors, so we can
easily take the few coordinates of these vectors as (scalar) features for our traditional classi�ers. We call
them “basic summary statistics”.

Other functional summaries, called “signatures”, map the diagrams to large vectors. Using all such vector
coordinates as features can entail computational ine�ciency. Another problem is the risk of reduced
accuracy, as a single vector coordinate might have a very small feature importance, and classi�cation
performance tends to su�er from a large number of insigni�cant features. Therefore, it can be advisable to
compute statistics from these vectors to feed into the classi�ers. We will compare the feature importance
of coordinate features with the importance of such statistics in Section 6.2 to determine the most suitable
approach.

3.1 Persistence Landscape

Figure 3.1 Construction of the persistence landscape [HMR21].

The persistence landscape, introduced by [Bub15], is a popular functional summary [Ber+20]. Rather
than directly showing single persistent holes, the persistence landscape is a histogram-like summary cap-
turing the distribution of topological features.
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To construct a persistence landscape from a persistence diagram, we consider each homology dimension
separately. As shown in Figure 3.1, for each point in the persistence diagram of one dimension, we then
create an isosceles triangle with the point as one vertex and the other two vertices on the diagonal of the
persistence diagram. [Ber+20]. We then rotate the subdiagram of the respective homology dimension by
45 degrees clockwise. The triangles now collectively form a set of triangle functions, and by taking the
largest values of this triangle set, we derive the landscape function [Ber+20].

De�nition 3.1.1 (Persistence Landscape) Given a persistence diagram D = {(18 ,38)}=8=1, its persistence
landscape is a sequence of functions {_: }:2é, where each _: : í! í is de�ned as follows [Bub15]:

For each : 2 é, the function _: (n) is the :-th largest value among the functions {⇤8 (n)}82� , where

⇤8 (n) = [min {n � 18 ,38 � n}]+ (3.1)

Here, 2+ = max(2, 0) and í = í[ {�1, +1} is the extended real number line. The functions {⇤8 (n)}82�
are called triangle functions because of their triangular shape.

We consider the :�th largest values of the set of triangles for several : to identify the most signi�cant
topological features at di�erent levels of persistence. Note that : is not the homology dimension here.

Landscape Distance

The distance between the persistence landscapes of two persistence diagrams is called the “landscape dis-
tance” [Bub15]. IfD,D0 denote two persistence diagrams and _, _0 their respective persistence landscapes,
the ?�landscape distance (? > 0) between D,D0 is de�ned by [Bub15]

⇤? (⇡,⇡ 0) = k_ � _0 k? , (3.2)

where

k_k?? =
1’
:=1

k_: k?? . (3.3)

Stability of Persistence Landscapes

The landscape supremumnorm k_k1 is shown to be the same as 1
2 pers1(⇡), where pers1(⇡) is the largest

persistence in a persistence diagram, and is bounded by the Bottleneck distance [Bub15]. Therefore, the
persistence landscape is stable with respect to this supremum norm [Bub15]. This makes it a robust tool
for data analysis.

3.2 Silhouette

Silhouettes are a variation of the persistence landscape and are also de�ned in terms of triangle functions
⇤8 (n). Giotto TDA uses power-weighted silhouettes of persistence diagrams [Tau+20], based on the idea
of Chazal et al. [Cha+14].

De�nition 3.2.1 (Silhouette) Let D = {(18 ,38)}=8=1 be a persistence diagram and F = {F8}=8=1 weights,
given by F8 = |38 � 18 |? , ? � 1, [Cha+14], where | 38� 18 | denotes the persistence of the 8-th feature. The
silhouette of D weighted byF is the function q : í! í de�ned by [Tau+20]

q (C) =
Õ=

8=1F8⇤8 (n)Õ=
8=1F8

, (3.4)

where ⇤8 (n) are de�ned in 3.1.
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Figure 3.2 Exemplary power-weighted silhouettes for di�erent choices of ? , namely ? = 0.1 and ? = 3 [Cha+14].

The de�nition of silhouettes depends on a parameter ? [Cha+14]. When ? is large, the most persistent
pairs are dominating the silhouette function [Cha+14]. When ? is small, the points in the persistence
diagram are treated more uniformly, or the less persistent holes are even more dominant [Cha+14]. The
choice of ? depends on what structures we are looking for in the data.

Figure 3.2 shows an example of power-weighted silhouettes of a persistence diagram (for one homology
dimension). Like in constructing a persistence landscape, the �rst step to constructing a silhouette is to
rotate the respective persistence diagram clockwise by 45 degrees [Cha+14]. Then, we construct triangle
functions de�ned in 3.1, but instead of taking their largest values, we sum their weighted contributions
[Cha+14].

Stability of the Silhouette

The silhouette is stable with respect to the Bottleneck distance [LS21].

3.3 Betti Curve

The Betti curve (also Betti sequence), originally de�ned in 2017 [Ume17] [JJ21], is a very simpli�ed repre-
sentation of a persistence diagram, which shows the number of features that are alive at a given �ltration
parameter threshold.

Figure 3.3 Construction of the Betti curve [HMR21]. Labels of the barcode axis are exluded.

Figure 3.3 shows how to construct the Betti curve for one homology dimension of a persistence dia-
gram. First, we convert the persistence diagram into a “persistence barcode”. A persistence barcode is a
representation in which each point becomes a horizontal line with the length of the point’s persistence
[Ume17]. [Car+05]. Then, for each �ltration parameter threshold n , the number of lines that are “active” at
n is counted. These numbers de�ne the value of the Betti sequence at n [Ume17]. For example, we identify
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two active intervals when at n = 0 in Figure 3.3. At n = 1, we again �nd two intervals, with the 0�th
interval already having died.

De�nition 3.3.1 (Betti Curve) Let D = {(18 ,381)}=8=1 be a persistence diagram. The respective Betti curve
is a function VD : í! éwhose values VD , B 2 í, are the amount of points (18 ,38) inD such that18  B < 38
[Tau+20]. Here, we count with multiplicity [Tau+20], meaning that we consider how many times each point
contributes to this amount.

Stability of the Betti Curve

Johnson et al. showed that the (original) Betti curve is unstable with respect to the 1-Wasserstein metric
[JJ21]. Similarly, it is unstable with respect to the Bottleneck distance [JJ21].

Recall that we noted in Section 2.5 that unstable functional summaries are particularly sensitive to
small-scale holes (noise), and we might pro�t from topological noise in our analysis. Including unstable
functional summaries like the Betti curve might therefore turn out valuable.

3.4 Heatkernel

We can apply “kernel-density estimation techniques” to persistence diagrams to estimate the distribution
of the points within a persistence diagram. A kernel is de�ned as follows.

Figure 3.4 Heatkernel computed from data points sampled from a circle with noise. Homology dimension 0 (left), 1
(middle) and 2 (right).

De�nition 3.4.1 (Kernel) A kernel on a set � is a function [Tau+20]

: : � ⇥� ! í (3.5)

for which there exists a map q from � to a vector space + , such that for G,~ 2 �,

: (G,~) = hq (G),q (~)i. (3.6)

[Rei+14] introduces a kernel-based functional summary that works by convolving persistence diagrams
with a Gaussian kernel [Tau+20]. We will call their kernel-based functional summary “heatkernel”. The
idea is to use a kernel to assess the dissimilarity between two persistence diagrams D,D0 [Rei+14] .

The kernel presented [Rei+14] is a “Gaussian kernel” given by

: (D,D0) := 1
8cf

’
?2D,@2D0

exp
�
�8�1f�1k? � @k2

�
� exp

�
�8�1f�1k? � @̄k2

�
(3.7)

q (G) := 1
4cf

’
?2D

exp
�
�4�1f�1kG � ? k2

�
� exp

�
�4�1f�1kG � ?̄ k2

�
, (3.8)
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where f > 0 is called the scale, and ?̄ is the point you get when mirroring ? on the diagonal [Rei+14].

Therefore, our Gaussian kernel is the sum of exponentially weighted distances between two points in
two persistence diagrams ? 2 D and @ 2 D0 [Rei+14].

To obtain a Gaussian kernel for one persistence diagram D, we set D0 to be the diagonal diagram
[Rei+14], consisting of only zero-persistence holes, and measure the dissimilarity of D to this diagonal
diagram.

Computing the “heatkernel” functional summary involves convolving the Gaussian kernel of a persis-
tence diagram with the original persistence diagram. To be exact, we convolve the Gaussian kernel with
the “Dirac delta distribution” of the persistence diagram (for each homology dimension separately), which
results from mapping each point ? in D to a Dirac delta function X (G � ?) [Tau+20]. Dirac delta functions
are zero everywhere except at the point ? , where they are in�nite, such that they integrate to 1 over their
domain [Tau+20].

After performing such a convolution, we perform the same convolution with mirrored subdiagrams
re�ected about the diagonal [Tau+20].

These convolutions smooth out the discrete points ? in the persistence diagram, leading to an impressive
visualization of the diagram and a summary that is quite robust as it tends to smooth over noisy data,
reducing the impact of outliers or small, non-robust features [Rei+14]. Figure 3.4 shows an example of
a heatkernel, computed from data sampled from a circle with noise, which is shown in Figure 2.12 (The
corresponding persistence diagram is shown in Figure 2.16).

We used the software Giotto TDA to compute the heatkernels. For computational e�ciency, Giotto
TDA does not use the complete persistence diagrams, but only “locations evenly sampled from appropriate
ranges of the �ltration parameter” [Tau+20].

Stability of the Heatkernel

The authors of [Rei+14] show that their Gaussian kernel is stable with respect to the 1�Wasserstein dis-
tance.

3.5 Persistence Images

Persistence images are another kernel-based functional summary, which was introduced by [Ada+17].
Figure 3.5 shows the construction of a persistence image. After rotating a persistence diagramD clockwise
by 45 degrees, we map it to an integrable function dD : í2 ! í, which we call persistence surface
[Ada+17]. We construct this surface as the sum of weighted Gaussian kernels centered at every point of
the persistence diagram [Ada+17].

Figure 3.5 Construction of the persistence image [Ada+17].
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We then construct a grid on the persistence surface. Finally, we compute the integral of d⌫ within each
grid box to compute the persistence image cell [Ada+17]. The resulting persistence image is a “vectorized”
representation of the persistence diagram [Ada+17].

The Gaussian kernels we center around each point (18 ,38) in a persistence diagram D are given by
[Ada+17]

: (G,~) = 1
2cf2

4�[ (G�18 )2+(~�38 )2]/2f2
. (3.9)

The persistence surface is as a weighted combination of these kernels [Ada+17]:

dD(G,~) =
’

D2) (D)
5 (D): (G,~), (3.10)

where) (D) is the rotated persistence diagram, and the 5 (D) areweighting functions de�ned as [Ada+17]

5 (D) =
8>>><
>>>:

0 if D  0
D
1 if 0 < D < 1, and
1 if D � 1

. (3.11)

Here, 1 is the persistence value of the most persistent feature [Ada+17].

After creating a grid on the surface, we compute the persistence image value of each pixel ? (which are
squares in the grid) as the persistence surface over the ?) [Ada+17]:

De�nition 3.5.1 (Persistence Image) For a persistence diagramD, a persistence image is the collection of
pixel values � (dD)? ,

� (dD)? =
∫

?
dD(G,~)3~3G . (3.12)

Stability of Persistence Images

Adams et al. prove the stability of the persistence image with respect to the 1-Wasserstein distance
[Ada+17].

3.6 Amplitude

Amplitude is a basic functional summary introduced by [Giu+24].

Let � be the set of persistence subdiagrams of each homology dimension. We can vectorize � using a
vectorization q : � ! + with + being a normed space [Tau+20].

Generally, an amplitude is a function 5 : � ! í on �, for which 5 (G) = kq (G)k for all G 2 - [Tau+20].

In persistent homology, this norm kq (G)k is often constructed by the Wasserstein, Bottleneck, or Land-
scape metric [Tau+20].

For instance, for a persistence diagram D = {(18 ,38)}=8=1, the amplitude based on the ?�Wasserstein
distance, theWasserstein amplitude of order ? , is the !? norm of the vector of point distances to the diagonal
[Tau+20]:

�, =

p
2
2

 ’
8

(38 � 18)?
! 1

?

. (3.13)
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The Landscape amplitude ofD is essentially the landscape distance between⇡ and the diagonal diagram,
which contains only the diagonal points [Tau+20].

Stability of the Amplitude

Persistence diagrams are stable with respect to the Wasserstein and Bottleneck distances, meaning that
the Wasserstein and the Bottleneck amplitudes are also stable. The Landscape amplitude is stable, as well
[Bub15].

3.7 Number of Points

The Number of Points in a persistence diagram is also a quantity that can turn out helpful in data analysis
[Tau+20]. Note that they are not the same as Betti numbers. While Betti numbers refer to the number of
holes in the underlying manifold of the data, the number of points in a persistence diagram is the number
of distinct holes in a �ltration, including very small-scale holes.

Stability of the Number of Points

As persistence diagrams are stable under small perturbations [CSEH07] to the Bottleneck and otherWasser-
stein distances, so is the number of points [KK21].

3.8 Persistence of the Most Prominent Point

We additionally included the persistence of the point with the largest persistence as a feature in our anal-
ysis.

Stability of the Most Prominent Point

The persistence of the most prominent point is stable with respect to the Bottleneck and otherWasserstein
distances[KK21].

3.9 Persistence Entropy

We can quantify the degree of diversity of points in a persistence diagram by a functional summary called
persistence entropy, introduced by [AGDR19]. The persistent entropy %⇢ of a persistence diagram D is
computed using the formula [KK21]:

%⇢ (D) :=
’
G2D

� ;G
!D

ln
✓
;G
!⇡

◆
. (3.14)

Here, !D :=
Õ

G2D ;G is the sum of the lifetimes of all points in the diagram. If the diagram only consists
of the diagonal, the persistent entropy is considered zero [KK21].

Stability of the Persistence Entropy

The authors of [AGDST18] �nd that persistence entropy is stable with respect to the Bottleneck and
Wasserstein distance.
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3.10 Complex Polynomials

Complex polynomials are a feature in Giotto TDA [Tau+20] based on [DFF15], which in turn is based on an
idea of Landi [Fer99] [DFF15]. Her idea was to encode a persistence diagram using coe�cients of complex
polynomials that have the points in the persistence diagrams as roots [DFF15].

De�nition 3.10.1 (Complex Polynomial Vectorization) LetD = {(18 ,38)}=8=1 be a persistence diagram,
and let<8 denote the multiplicity for a respective birth-death pair (18 ,38), meaning that there are< features
that are all born at 18 and die at 38 [KMN17]. For a given function ' : í2 ! É, the complex polynomial for
is given by [Ali+23] [DFF15]

⇠ (I) :=
÷

(18 ,38 )2⇡
[I � '(18 ,38)]<8 . (3.15)

Giotto TDA gives three options for the function ', one of which is the continuous function ' : í2 ! É
[Tau+20],

'(G,~) = G + 8~. (3.16)

The �nal vector we can use for classi�cation consists of the �rst few highest degree coe�cients of⇠ (I)
[Tau+20].

Stability of Complex Polynomials

The authors of [DFF15] do not prove stability for their complex polynomials.

3.11 ATOL vectorization

The adaptive topology-oriented learning (ATOL) vectorization is a feature that Giotto TDA does not pro-
vide [Tau+20], but an alternative Python package, GUDHI [The15], does. The vectorization is based on
[Roy+20].

Constructing an ATOL vectorization involves two steps. Let D1, D2, ..., D= be a set of persistence
diagrams. The �rst step of the ATOL algorithm involves clustering D1, D2, ..., D= into 1 clusters (for
instance, with KMeans) [The15]. We then compute the empirical mean measure D̄8 for each cluster 28 ,
8 = 1, ...,1. D̄8 is the representative center for cluster 28 obtained through the clustering process [The15].
We refer to this step as the “quantization step” [Roy+20].

Next, we de�ne1 contrast functions, which compute the proximity of a persistence diagram to the cluster
centers [The15].

De�nition 3.11.1 (Contrast Functions) Let D be a persistence diagram. For cluster centers 28 , 8 = 1, ...,1,
we de�ne a scaling factor [Roy+20]

f8 :=
1
2

min
92 [1 ], 9<8

��28 � 2 9��2 . (3.17)

The contrast functions �
⌦8 : í2 ! í | 1  8  1

 
(3.18)

are de�ned as [Roy+20]

⌦8 (⇡) = exp
✓
� kD � I8 k2

f8

◆
. (3.19)

Our 1-dimensional ATOL vectorization of persistence diagram D is now given by [Roy+20]

(⌦1(D), . . . ,⌦1 (D)) . (3.20)
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Stability of the ATOL vectorization

In [Roy+20], Chazal et al. show that ATOL vectorizations are stable with respect to the 1-Wasserstein
metric.

3.12 Adcock-Carlsson Coordinates

In their in�uential paper “The ring of algebraic functions on persistence barcodes” [ACC16], Adcock,
Carlsson, and Carlsson de�ned a summary of persistence barcodes which will prove to have a pretty
signi�cant impact on our classi�cation accuracy.

In [BPP21], the authors used the same features on persistence diagrams, calling them “Adcock-Carlsson
coordinates”. In their paper, Adcock-Carlsson coordinates are among the most accurate and e�cient fea-
tures for a variety of tasks on a set of �ve datasets.

The speci�c Adcock-Carlsson coordinates (21, 22, 23, 24)) suggested by [ACC16] and chosen by [BPP21]
are de�ned as follows.

De�nition 3.12.1 (Adcock-Carlsson Coordinates) Given a persistence diagram D = {(18 ,38)}=8=1, the
vector (21, 22, 23, 24)) is de�ned by

21 =
’
18

18 (38 � 18) (3.21)

22 =
’
8

(~max � 38) (38 � 18) (3.22)

23 =
’
8

128 (38 � 18)4 (3.23)

24 =
’
8

(3max � 38)2 (38 � 18)4 , (3.24)

where 3max denotes the latest death [BPP21].

Stability of Adcock-Carlsson coordinates

According to [Ali+23], changes in a persistence diagram (in terms of Bottleneck distance) can lead to large
�uctuations in the corresponding Adcock-Carlsson coordinates. This makes Adcock-Carlsson a relatively
unstable functional summary, which does not mean they cannot be helpful for our purposes. If one wanted
to �nd an alternative to Adcock-Carlsson coordinates that addresses the problem of Bottleneck instability,
one could use tropical coordinates [Ali+23].
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4 Data Exploration

Before feeding our functional summaries into a machine learning model, we want to explore them visually
and see if we can detect patterns without the help of machine learning. Our method for computing the
persistence diagrams, which is a necessary step before computing functional summaries, is described in
Section 5.

4.1 Data

Wewill conduct all our experiments onmouse brain data, but the same or similar methods could be applied
to human brain data. Our mouse brain data consists of EEG/EMG data and Calcium brain imaging data.

The data we use for this master thesis consists of two datasets, and we perform two di�erent classi-
�cation tasks on them. The �rst dataset, the “Anesthesia Data”, is multimodal brain data consisting of
EEG/EMG and brain imaging data. The data was recorded on �ve di�erent mice, put under �ve di�erent
levels of anesthesia, and recorded for �ve minutes during each of these levels.

We encoded the anesthesia levels as numerical labels for our analysis. Label 0 means 1% of anesthesia
gas, label 1 means 1.2%, label 2 means 1.4%, label 3 means 1.6%, and label 4 means 1.8%.

The second dataset, the “SleepData”, solely consists of EEG/EMGdata, recorded on three subjects, which
were recorded for about 2 hours each and observed regarding their sleeping behavior. Label 1 stands for
“Awake”, label 3 for “Non-REM Sleep”, label 5 for “REM Sleep” and label 2, 5 and 7 are di�erent types of
artifacts.

Electroencephalography (EEG) and Electromyography (EMG) Data

Electroencephalography (EEG) is a commonly used technique in neuroscience, o�ering insights into the
brain by capturing and analyzing its electrical activity in a multivariate or univariate time series [CA08].

For measuring electrical activity in the brain, multiple electrodes are placed on the scalp. EEG detects
brain activity by measuring the voltage between pairs of electrodes [Hat+23]. It detects the activity of
large groups of neurons primarily in areas surrounding the electrodes [CA08].

In our analysis, we positioned only two electrodes on the mouse scalps. One electrode is positioned
at the top of the left hemisphere of the mouse scalp, while we placed another at the bottom of the right
hemisphere. The potential di�erence between these two electrodes is recorded, ampli�ed, digitized, and
stored [CA08].

The resulting EEG data is a univariate time series with a very high temporal resolution, showing the
brain activity in the order of milliseconds.

In addition to EEG data, we record Electromyography (EMG) data. EMG records the activity of muscles
[BD06], which can help to distinguish sleep and anesthesia states, as breathing activity is lower in deeper
anesthesia or sleep stages.
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Figure 4.1 shows parts of the raw EEG Sleep data of di�erent labels. As you can see, Non-REM sleep and
the Awake state look relatively quite similar, while the amplitude during Non-REM Sleep is more diverse.

Figure 4.1 EEG data from the Sleep dataset. Awake (left), Non-REM (middle) and REM Sleep (left).

Figure 4.2 shows EEG and EMG Anesthesia data recordings for one subject (subject “m292”), while the
subject was put under a low level of anesthesia for �ve minutes, while Figure 4.3 shows similar recordings
for a high level of anesthesia.

The most apparent remark that can be made from Figure 4.2 and Figure 4.3 is that the EEG recordings
seem to have (at least partly) higher peaks under a higher level of anesthesia. However, the amplitude also
seems to vary more over time under a higher level of anesthesia.

As we can see, the EMG data in Figures 4.2 and 4.3 has a low resolution. On the �gures, we observe that
muscle movement is smaller in higher levels of anesthesia.

Figure 4.2 EEG (left) and EMG (right) data for subject m292 under the weakest level of anesthesia.

Brain Imaging Data

EEG and EMG recordings have a high temporal resolution. However, using only two electrodes does not
capture any spatial information. Therefore, we additionally want to record the brain by �lming it, even
though videos usually have a lower temporal resolution than EEG recordings.

We call our method to record video data of the mouse brains brain imaging. When speaking of brain
imaging, researchers canmean di�erentmethods, including fMRI in the three-dimensional domain [Glo11].
In our analysis, brain imaging recordings refer to (two-dimensional) videos of the mouse brain from above.
Figure 4.4 shows an exemplary frame of such a recording.
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Figure 4.3 EEG (left) and EMG (right) data for subject m292 under the highest level of anesthesia.

Figure 4.4 Example frame of brain imaging recordings for subject m292.

Our method involves tracking calcium levels in neurons. After neuronal activity, there is a strong re-
sponse in calcium in the brain [Che+13], such that tracking calcium levels is, with some delay, a measure
of neuronal activity. We make calcium levels visible to the bare eye with �uorescent calcium sensors in
the mouse brain.

The method we use is based on a procedure described in [Che+13], which uses GCaMPs as calcium
sensors. GCaMPs refer to a family of ultrasensitive protein calcium sensors [Che+13]; we use GCaMP6m.

GCaMPs are �uorescent proteins that indicate the calcium level in neurons and, therefore, their activity.
A chemical reaction between GCaMPs and calcium causes GCaMPs to �uoresce with green light when
irradiated with blue light [Che+13]. By observing the green irradiated green light, we can observe calcium
levels with our bare eyes and, therefore, also indirectly observe neuronal activity.

GCaMPs are a type of genetically encoded calcium indicators (GECIs) [Che+13], which means that we
do not have to inject the proteins directly into the mouse brain; instead, the mouse’s genes are manipulated
to contain the genetic code for the �uorescent proteins [OLK19].

We genetically manipulated the mice using structure-based mutagenesis. This technique involves in-
troducing the DNA encoding GCaMP6 into the mice via a virus that infects neurons [Che+13].
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4.2 Visualizing Persistence Diagrams

Wasserstein Barycenters

Figure 4.5Wasserstein Barycenters of EEG persistence diagrams, subject m292. Label 0 on the top left, followed by
label 1, 2, 3 reading from left to right, and label 4 at the bottom right.

For the Anesthesia data, we created persistence diagrams for each 4-second interval of the EEG/EMG
data and for each frame of the brain imaging data. Instead of visualizing all of them here, we computed the
Wasserstein barycenters of all persistence diagrams for eachmodality and label. TheWasserstein barycenter
of a collection of persistence diagrams can be seen as the most representative diagram, as is the persistence
diagram with the smallest average Wasserstein distance to all other persistence diagrams [ABA22].

Figure 4.5 shows the Wasserstein barycenters for the EEG data recorded on subject m292. As can be
seen, none of the persistence diagrams has holes of a dimension higher than 2. For higher labels, there
seem to be less holes in general.

Figure 4.6 shows the Wasserstein barycenters for the brain imaging data recorded on subject m292.
The di�erences between the labels are less apparent here, but again we observe that there are no holes of
dimension higher than 2.

To compute the Wasserstein barycenters for the brain imaging data, we only used a randomyl selected
portion of each segment in the data instead of the complete data due to computational e�ciency, such
that the brain imaging Wasserstein barycenters are only partly representative. For each segment, we then
computed the Wasserstein barycenter in each segment �rst, and the overall Wasserstein barycenter as the
most representative one out of these segment Wasserstein barycenters.

Dissimilarity Matrices

Figure 4.7 shows a dissimilarity matrix depicting the Wasserstein distances between the Wasserstein
barycenters of the di�erent labels, using the EEG Anesthesia data of one subject. Figure 4.8 shows the
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Figure 4.6 Wasserstein Barycenters of brain imaging persistence diagrams, subject m292. Label 0 on the top left,
followed by label 1, 2, 3 reading from left to right, and label 4 at the bottom right.

Figure 4.7Dissimilarity matrix of theWasserstein barycenters of the di�erent labels for the EEG data, subject m292.
Dissimilarity is measured by the Wasserstein metric.

same for brain imaging data. It is not surprising that the respective Wasserstein barycenters tend to di�er
more for higher di�erences in the depth of anesthesia.

4.3 Visualizing Basic Summary Statistics

Figure 4.9-4.12 show box plots of the distributions of the basic summary statistics amplitude and number
of points for EEG and brain imaging data.
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Figure 4.8 Dissimilarity matrix of the Wasserstein barycenters of the di�erent labels for the brain imaging data,
subject m292. Dissimilarity is measured by the Wasserstein metric.

For both data modalities, amplitude increases for some homology dimensions with an increasing depth
of anesthesia and decreases for other homology dimensions. The number of points mostly decreases with
an increasing depth of anesthesia for EEG data and increases when the depth of anesthesia increases for
brain imaging data.

Figure 4.9 Box plots for the amplitude over di�erent levels (EEG).

Figure 4.10 Box plots for the number of points over di�erent levels (EEG).

4.4 Visualizing Signatures

Giotto TDA contains in-built functions to visualize signatures [Tau+20], based on methods in the Python
package plotly [Inc15]. With these functions, we visualized signatures of the Wasserstein barycenters of
the anesthesia data, trying to visually discover patterns that distinguish low anesthesia (label 0) from high
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Figure 4.11 Box plots for the amplitude over di�erent levels (brain imaging).

Figure 4.12 Box plots for the number of points over di�erent levels (brain imaging).

anesthesia (label 4). Signatures of persistence diagrams can be more suitable for distinguishing than the
persistence diagrams themselves, as we will see, as persistence diagrams can not be easy to grasp visually.

This chapter shows a selection of signatures, while signatures that are not shown in this chapter can be
found in the Appendix. We adapted some plotly parameters in the Giotto TDA functions for creating the
visualizations.

Persistence Landscapes

Figure 4.13 compares the persistence landscapes of the Wasserstein barycenter of label 0 to that of label 4
for the EEG Anesthesia data.

The persistence in dimension 0 peaks at around n = 0.15 for label 0 and at around n = 0.4 for label 4.
The higher and broader peak in label 4 suggests that the data under deep anesthesia has lasting connected
components, which re�ected in the persistence diagrams in Figure 4.5. Also for homology dimension 1
and 2 (but especially for dimension 1), deeper anesthesia leads to more signi�cant topological loops.

Figure 4.14 shows the persistence landscape of the brain imaging Wasserstein barycenters of the lowest
and highest level of anesthesia.

The di�erence of the persistence landscape in homology dimension 0 is rather subtle. In homology
dimension 1, persistence peaks at smaller �ltration parameter values in the lowest level of anesthesia than
in the highest level of anesthesia (n ⇡ 6500 and n ⇡ 8700 vs. n ⇡ 5000 and n ⇡ 8000).
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Figure 4.13 Persistence landscapes computed from the Wasserstein barycenter of the EEG anesthesia data, subject
m292. Persistence landscape for lowest level of anesthesia on the left, persistence landscape for highest level of
anesthesia on the right.

Figure 4.14 Persistence landscapes computed from theWasserstein barycenter of the brain imaging anesthesia data,
subject m292. Persistence landscape for lowest level of anesthesia on the left, persistence landscape for highest level
of anesthesia on the right.

Betti Curve

Figure 4.15 compares the Betti curves of the Wasserstein barycenters of label 0 to label 4 for the EEG
Anesthesia data.

In homology dimension 0, the Betti curve for both labels starts high and then decreases when the �ltra-
tion parameter n increases. It decreases slower in label 4, however, indicating that the 0-dimensional holes
of label 4 are, on average, more persistent. Homology dimension 1 and 2 are hard to visually compare in
this depiction due to the scale.

Figure 4.15 Betti curve computed from the Wasserstein barycenter of the EEG anesthesia data, subject m292. Betti
curve for lowest level of anesthesia on the left, Betti curve for highest level of anesthesia on the right.
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Figure 4.16 compares the Betti curves of the Wasserstein barycenters of label 0 to label 4 for the brain
imaging Anesthesia data. In contrast to what we observed for the EEG data, the Betti curve of homology
dimension decreases slightly earlier for label 4 than for label 0. This indicates that there are more persistent
0-dimensional holes for label 0 than for label 4.

Figure 4.16 Betti curve computed from the Wasserstein barycenter of the brain imaging anesthesia data, subject
m292. Betti curve for lowest level of anesthesia on the left, Betti curve for highest level of anesthesia on the right.

Heatkernels

Figure 4.17 shows the heatkernels of homology dimension of the Wasserstein barycenters of label 0 and 4
for the EEG Anesthesia data. Homology dimensions 1 and 2 are shown in the Appendix in Figure A.3 and
A.4.

Figure 4.17 Heatkernels for homology dimension 0 from the Wasserstein barycenter of the EEG Anesthesia data,
subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia on the
right.

Figure 4.18 shows the heatkernels of homology dimension of the Wasserstein barycenters of label 0 and
4 for the brain imaging Anesthesia data. Homology dimensions 1 and 2 are shown in the Appendix in
Figure A.5 and A.6.

4.5 Searching Clusters in Functional Summaries

It is an interesting question to ask whether the direct embedding vectors representing the signatures show
clear clusters which represent the di�erent label. To be able to answer this question visually, we reduce
the dimension of each embedding to 3, such that we can depict all signature embedding in a 3-dimensional
vector space.
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Figure 4.18Heatkernels for homology dimension 0 from theWasserstein barycenter of the brain imaging Anesthesia
data, subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia
on the right.

Depending on the nature of the signature, we either apply UMAP [MHM20] or Kernel PCA [SSM05],
two common dimensionality reduction algorithms, to reduce the dimension of the signature; we apply
Kernel PCA to kernel-based signatures, and UMAP to the remaining signatures.

Figure 4.19 Dimensionality reduced Betti curve embeddings for EEG data, subject m292. Homology dimension 0
(left), 1 (middle) and 2 (right).

Some exemplary results for subject m292 are shown in Figure 4.19, which shows the dimensionality
reduced Betti curve of each homology dimension for EEG data, and Figure 4.20, which shows the dimen-
sionality reduced Betti curve of each dimension for brain imaging data.

The �gures are representative of other signatures, as well. All (dimensionality-reduced) signatures do
not show clear clusters. Instead, they often show a gradual change along the labels. The points appear
more separable for brain imaging data, whereas some EEG signatures show almost no pattern.

We additionally search for clusters in further functional summaries that do not require dimensionality
reduction to be visible, such as Adcock-Carlsson coordinates. Figure 4.21 depicts the distribution of the
four Adcock-Carlsson coordinates for the brain imaging data of subject m292 pairwise in two scatter plots.
At least for this subject, we can see clear clusters, which is an interesting result. Other summary statistics,
as exemplary shown in Figure 4.22, show no clusters but a gradual change instead.
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Figure 4.20 Dimensionality reduced Betti curve embeddings for brain imaging data, subject m292. Homology di-
mension 0 (left) and 1 (right).

Figure 4.21 Adcock-Carlsson coordinates for brain imaging data, subject m292. Coordinates 1 and 2 on the left, 3
and 4 on the right.

4.6 Quantifying the Correlation Between Topological Complexity and Time
Series Complexity

We conducted a simple approach for �nding correlations between time series statistics indicating time
series complexity with topological statistics indicating topological complexity. The approach consisted of
correlating time series amplitude and the variance of the amplitude with the topological basic summary
statistics.

As you can see in Table 4.1, the correlation is sometimes signi�cant, and sometimes quite low.
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Figure 4.22 Persistent Entropy (left) and Amplitude (right) for brain imaging data, subject m292, each for both
homology dimensions.

Table 4.1 Correlation of time series statistics indicating time series complexity with topological statistics indicating
topological complexity.

Mean EEG Amplitude EEG Amplitude Variance
No Points, Dim 0 0.22348645 0.04401384
No Points, Dim 1 0.3812383 -0.45042328
No Points, Dim 2 0.33099998 -0.41640633
Amplitude, Dim 0 -0.15437558 0.49142078
Amplitude, Dim 1 0.53908987 -0.45419209
Amplitude, Dim 2 0.64841197 0.08495041

Persistence Entropy, Dim 0 0.66713319 -0.31385204
Persistence Entropy, Dim 1 0.45073513 -0.46159222
Persistence Entropy, Dim 2 0.33882067 -0.43717896

4.7 Quantifying the Correlation Between the Data Modalities

In the Anesthesia data, the EEG/EMG and brain imaging data was recorded simultaneously. Technically,
they are both time series; the EEG and EMG data are a series of data points with a high temporal resolution,
while the brain imaging data is a series of images with a lower temporal resolution. As they evolve over
time, we assume the two data modalities show some shared patterns in their homology.

When we later feed the data to machine learning models, we hope the classi�ers will recognize such
shared patterns in a way that improves classi�cation accuracy. Beforehand, we analyze such shared pat-
terns in this chapter by computing correlations between summary statistics of both data modalities.

We therefore correlate the basic summary statistics of the segments of the EEG Anesthesia data with
the basic summary statistics of the segments of brain imaging Anesthesia data.

As shown in table 4.2, the correlation between the basic summary statistics of the two modalities is
negative in all cases. The absolute correlation is not signi�cant in some cases, and very signi�cant in other
cases, like for persistence entropy.
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Table 4.2 Correlation of the basic summary statistics of EEG and brain imaging data.

Homology Dimension 0 Homology Dimension 1
Number of Points -0.16449993 -0.72676456

Amplitude -0.45882338 -0.00214351
Persistence Entropy -0.80898952 -0.74508192
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5 Methods for Classification

The following chapter will describe our methods for creating persistence diagrams from the data modali-
ties, aligning the data, and �nally classifying it into anesthesia and sleep stages.

5.1 Preprocessing

Before computing the persistence diagram, we apply some simple preprocessing steps.

Common Preprocessing Steps

For EEG data, common preprocessing steps for generating persistence diagrams include band-pass �ltering
to eliminate noise, downsampling the data, and removing artifacts [XDR21]. While transforming EEG
data into another space is not widely applied, some studies have explored this approach. Those studies
mostly use Independent Component Analysis (ICA) to extract source components or Fourier transform for
denoising [XDR21].

For image data, blurring approaches like Gaussian blurring are commonly used preprocessing steps
[Pul19].

Our Preprocessing Steps

As persistence diagrams are particularly sensitive to outliers [CVJ21], removing artifacts from the EEG/EMG
data is essential. Our method to to detect artifacts consisted of labeling data points with high “z scores”
as artifacts, which are the numbers of standard deviations the data point is di�erent from the mean
[BA08].There were artifacts in the sleep data but none in the anesthesia data (which was also re�ected
in direct plots of the data).

We conducted initial experiments with ICA on the EEG/EMG data. However, they yielded worse re-
sults than experiments with raw data, so we restricted our preprocessing for EEG/EMG data to removing
outliers.

The brain imaging images are left as they were initially, as we do not want to lose local information
with Gaussian blurring.

5.2 Creating EEG/EMG Data Persistence Diagrams

Related work

As mentioned, we want to create persistence diagrams for each 4-second interval in the EEG and EMG
time series. However, we did not restrict our literature review to topological approaches analyzing EEG
time series windows (such as [Zen+21]) but also reviewed literature capturing the homology of an entire
EEG time series.

Topological Data Analysis has been applied to EEG data only recently [XDR21]. There are two main
approaches to analyzing univariate EEG data with TDA. The �rst approach is to apply sublevel set �ltration
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directly onto the EEG data, while the second approach is to apply TDA onto a vector space retrieved by
time delay embeddings [XDR21].

Table 5.1, an extension to a survey in [XDR21], provides an overview of existing approaches for creating
persistence diagrams from EEG data.

Table 5.1 Related literature for creating persistence diagrams from EEG data.

Paper Goal Preprocessing Method
[Zen+21] Time Series Forecasting Segmenting Time delay embedding
[Alt+21] Ml � BCl - Time delay embedding
[BB21] Eyes-open/eyes-closed

classi�cation
- Time delay embedding

[Yam+21] Improving Detection of
Delirium

- Time delay embedding

[MD20] Autism Spectrum
Disorder (ASD)

- Sublevel �ltration

[Wan+20b] Aphasia ICA Sublevel �ltration
[Wan+20a] Aphasia ICA Gradient �ltration
[Mar+19] Hypnotizability ICA Connectivity
[NM19] Brain state classi�cation - Sublevel �ltration
[WC19] Seizure localization Fourier transform Sublevel �ltration
[AYI18] Ml � BCl - Time delay embedding
[Pia+18] Detecting Epileptic

seizure
- Sublevel �ltration

[WC18] Epilepsy Fourier transform Sublevel �ltration

Time Delay Embeddings

Figure 5.1 Example of a nonperiod time series (left) converted to a time delay embeddings (right) with embedding
dimension< = 3 and time delay g = 16 [Tau+20].

With the time delay embeddings method, we can convert time series to point clouds, from which we
can subsequently create a Vietoris-Rips or Čech �ltration. Figure 5.1 shows an example of a time series
converted to a point cloudwith a time delay embedding. A time delay embedding is created by constructing
vectors in a vector space using past observations.
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For a chosen embedding dimension< and time delay g , we form a new vector y(C) from the time series
G (C) as [Tau+20]

y(C) = [G (C), G (C � g), G (C � 2g), . . . , G (C � (< � 1)g)] . (5.1)

We refer to this vector as a time delay embedding of G (C).

We can easily reconstruct the time series G (C) from the time delay embedding y(C). This is ensured by
Taken’s Theorem, which can be found in [Roh09].

Optimal Parameters

If we decide to use time delay embeddings, we must also decide on the delay and embedding dimension.
Mutual Information and False Nearest Neighbours are commonly used methods to determine the optimal
parameters of a time delay embedding [Alt+21].

To determine the optimal time delay g⇤, we can use a method called Mutual Information, provided by
Giotto TDA [Tau+20].

Mutual information determines the “mutual information” between the original time series and its de-
layed version, so the amount of information the two time series share, for several possible values of the
time delay g [Tau+20].

Subsequently, the optimal delay g⇤ is then determined as a value of g that minimizes the mutual infor-
mation [Tau+20]. Therefore, the time series delayed by g⇤ is the least redundant to the original series.

False Nearest Neighbours is a method for determining the optimal embedding dimension <. The un-
derlying assumption of the algorithm is that two points that are close in one dimension of the embedding
should also be close in other dimensions of the embedding [Tau+20]. We compute the distances between
two points in di�erent embedding dimensions, and if the di�erence between these distances is above a
certain threshold, we de�ne the two points as “false nearest neighbours” [Tau+20]. We then determine
the optimal embedding dimension as the embedding minimizing the number of false nearest neighbours
[Tau+20].

Our Method in a Nutshell

After preprocessing, we convert all 4-second time series segments to a point cloud with a time delay
embedding approach. We automatically determine the optimal time delay and embedding dimension with
Mutual Information and False Nearest Neighbours. We then create a Vietoris-Rips �ltration from each
time delay embedding and create persistence diagrams with Giotto TDA [Tau+20], which we can use for
further analysis.

Outlook for Multivariate EEG Data

When recording EEG and EMG data on humans, we are usually dealing with multivariate time series
as we primarily use more than two electrodes. While our approach is typical for univariate time series,
multivariate EEG data is usually approached di�erently.

Multivariate EEG data is often modeled in a dependence network [EYCO23], which also captures spatial
information. Dependence networks depict the brain as a network of brain regions, which is a natural
choice due to the network character of the brain, and model the dependence between the brain regions
[EYCO23].
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There are many ways to measure this dependence. Common metric choices are cross-correlation, co-
herence, partial coherence, and partially directed coherence [EYCO23].

[EYCO23] shows an example of how to approach a dependence network to analyze its homology. The
authors depict each time series in the multivariate EEG as a vector in a high-dimensional vector space, in
which the distance between the single vectors is based on their dependence [EYCO23]. They then build a
Vietoris-Rips �ltration in this vector space, using the vectors as vertices [EYCO23].

5.3 Creating Brain Imaging Data Persistence Diagrams

Related Work

Approaches using persistent homology on Calcium imaging are relatively rare, with one example being
[Ble+22]. More approaches are applying persistent homology on fMRI data [Sto+21], which has an addi-
tional spatial dimension but still permits similar approaches to ours.

Our approach to creating persistence diagrams from the brain imaging data was heavily inspired by
[Rie+20], which transforms fMRI data to cubical complexes using a sublevel set �ltration. Like [Rie+20],
we use cubical complexes but used a di�erent kind of �ltration, namely radial �ltration, as radial �ltration
was the kind of �ltration suggested for images by the software package Giotto TDA [Tau+20].

Our Method

We build cubical complexes and persistence diagrams directly from the brain imaging images in a con-
struction where each pixel corresponds to a vertex in the cubical complex, using radial �ltration.

5.4 Noise in Persistence Diagrams

We consciously decided not to remove noise from persistence diagrams, neither for the EEG/EMG nor the
brain imaging data. As mentioned in Section 2.4, we do not want to remove local geometric information
from our data. In a further evaluation, one could test how removing noise performs in comparison.

5.5 Data Fusion of Multimodal Brain Data

We are dealing with two fundamentally di�erent data modalities: Video data, which contains temporal and
spatial information, and time series data, which contains no spatial information but has a higher temporal
resolution than the video data.

So far, we have converted 4-second segments of the time series (EEG) data into persistence diagrams
and equivalently converted each frame in our brain imaging videos into a persistence diagram.

The two data modalities were recorded simultaneously; we want to combine them to extract knowledge
from both.

There are several ways to combine data. “Early data fusion” means �nding a common representation of
two raw data modalities [VCP22]. Early data fusion can be in a new domain or in the domain of one of the
data modalities, as in [DCK19], where fMRI signals are converted to time series and could potentially be
used the same way as EEG signals subsequently.

“Intermediate data fusion” means �rst processing the data modalities individually and then merging
intermediate results [VCP22]. In our case, this could happen either by combining persistence diagrams or
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“on feature level”, e.g. by combining signatures in representations as combined persistence images before
feeding them into one machine learning model [MKE23].

“Late data fusion”, in our case, means training two separate machine learning on the modalities and
subsequently combining their results [VCP22].

While late fusion could be a viable option, there might be cross-modal relationships between the two
data modalities that we can exploit to improve the results of our analysis [Wil+]. We can conclude from
high correlations between the feature distributions of the two modalities, described in Section 4.7, that
such interrelations are quite likely. Early and intermediate fusion might be better suited to �nd such
interdependencies.

Related Work of Fusing Brain Data

Table 5.2 shows a small survey of existing approaches for fusing brain data. The only topology-based data
fusion approach listed is marked by a star, even though more fusion approaches exist based on topology,
such as joint manifold learning [Dav+10]. Among those approaches in which early data fusionwas applied,
there were particularly many approaches using Joint ICA.

Table 5.2 Survey of data fusion approaches. Topology-based data fusion approach marked with a ⇤.

Paper Data Type Method
[DCK19] fMRI and EEG Early Data Fusion Generating timeseries

from fMRI data
[Del+21] fNIRs and EEG Intermediate Data Fusion Choose features based on

redundancy etc.
[CA08] fMRI and EEG Early Data Fusion Joint ICA

[MKE23]⇤ WESAD and AV-MNIST Intermediate Data Fusion Fuse Persistence Image
[Lee+16] PET and MRI Intermediate Data Fusion One-dimensional

Projection
[Ste+13] MEG and DTI Early Data Fusion Joint ICA
[MTF14] EEG and fMRI? Early Data Fusion Joint ICA

Our Approach

We decided to fuse the two data modalities on the feature level, so at an intermediate step. One thought
behind this is that unlike inmany early data fusion approaches, in which themodalities are often fused into
a dimensionality-reduced new space, we will not lose any information in a feature-based fusion process.

We want to capture the homology of intervals of the recorded data, and we chose the length of these
intervals to be 4 seconds. For the time series data, we computed persistence diagrams directly for these
4-second intervals, so we retrieved one persistence diagram for each interval. We then computed statistics
for each 4-second interval persistence diagram as described in section 3 and fed these statistics into a
machine learning model.

For the brain imaging data, we �rst computed a persistence diagram and the respective statistics for
each frame in a video. There are 80 frames in each 4-second interval. Instead of using the statistics of each
diagram directly as machine learning features, we �rst averaged the statistics over sets of 80 persistence
diagrams. This approach provides us with mean statistics representing the homology of each 4-second
interval in the brain imaging data.

Feeding the statistics for 4-second intervals of both time series and brain imaging data into the same
model is a type of intermediate, feature-level data fusion. With this type of data fusion, a machine learning
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model receiving statistics of both modalities for each 4-second interval will likely capture interrelations
between the modalities.

Experiments with Early Data Fusion

As an alternative, or extension, to our intermediate data fusion approach, we considered early data fusion
approaches, such as Joint ICA [Moo+08].

Many of the early data fusion approaches we reviewed are “blind source separationmethods” [PS20]. An
example is JIVE (Joint and Individual Variation Explained), which separates the data variability originating
from individual characteristics of the data modalities and the variability originating from cross-modal
interrelations [PS20].

The early data fusion approaches we reviewed all involve dimensionality reduction. Despite losing
information in such approaches, exploring them further could be a valuable extension to intermediate data
fusion. For instance, one could try to compute persistence diagrams and statistics from a space representing
shared variability and shared “hidden factors”, and then use these statistics as additional features in our
pipeline. Including topological features computed from hidden factors could emphasize interdependencies
between the modalities and improve the classi�cation result.

The problem is that the interrelations we want to use must be hidden factors that both modalities share
when observed over time. There is presumably no use in fusing a 4-second EEG interval with one frame of
the brain imaging data (with no temporal information), as the shared variance in such a depiction might
be only random noise.

After conducting a literature review and �rst practical experiments with two early data fusion ap-
proaches, Joint ICA and AJIVE (a variation of the JIVE algorithm) [Fen+18], it became clear that many
early data fusion approaches struggle with combining data modalities with entirely di�erent dimensions,
such as our video and time series segments.

Even though AJIVE, unlike Joint ICA, does not require both modalities to have the exact same shape,
video data is too high-dimensional for AJIVE. Thus, we would only be able to fuse a time series interval
with one single frame, which would be limited in its ability to capture any time-dependent variance.

A method to include early data fusion approaches in our classi�cation could be explored in future work.

5.6 Classification of Multimodal Brain Data into Anesthesia and Sleep
Stages

Once we have fused our multimodal statistics to one feature dataframe, we can classify it and evaluate the
classi�cation performance. Here, we want to compare our topological approach to a baseline approach,
which only uses statistical features. Wewill list all topological (machine learning) features and all statistical
features that we use later in this chapter.

Classifiers Used for the Topological Features

On tabular data, tree-based machine learning models tend to outperform Deep Learning models [GOV24].
Additionally, deep learning models commonly require immense datasets for good results, such that we
refrained from using a deep learning model and decided to use tree-based machine learning classi�ers
instead.
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Wedecided to useXGBoost and Random Forest, whichwe implemented using the Python packages scikit-
learn [Ped+11] and xgboost [TC16]. Both models are ensemble models based on Decision Trees [TC16]
[Ped+11]. While Random Forest uses Bagging as an ensemble method [Ped+11], XGBoost uses Boosting
as an ensemble method [TC16]. An explanation of Bagging and Boosting can be found in [B1̈2].

Splitting into Train and Test Sets

To ensure the variance of our model is not too high, we perform 5-fold Cross-Validation during the classi-
�cation. We do not split the data according to subjects, leaving, for instance, just one subject’s data as the
test set, as with a small amount of subjects, such a splitting strategy could make us su�er from variation
between the subjects and randomness. Instead, we reserve 20% of each subject’s data for the �nal test set
and use 80% of the remaining data as a training set and 20% as a validation set in each fold.

As some features, particularly ATOL vectorizations, depend on training data, we cannot perform the
splitting in the very end but de�ne train and validation sets for each fold before computing the features.
We compute 5 di�erent versions of the ATOL vectorizations for each of the 5 folds (each with di�erent
training data), but compute all other functional summaries only once.

Features

Table 5.3 Topological features used for both modalities and both Anesthesia and Sleep data.

Functional Summary Statistics Used for Classi�cation
Landscape Amplitude Direct Usage
Number of Points Direct Usage
Persistence Entropy Direct Usage
Largest Persistence Direct Usage

Adcock-Carlsson Coordinates Direct Usage
ATOL vectorizations Direct Usage

Persistence Landscape

L1 norm
Mean

Standard Deviation
Skewness
Kurtosis

Direct Usage of Embedding Coordinates

Heatkernel
Intensity
Maximum
Minimum

Silhouette

L1 norm
Mean

Standard Deviation
Skewness
Kurtosis

Direct Usage of Embedding Coordinates

Persistence Image
Intensity
Maximum
Minimum

Betti Curve

L1 norm
Mean

Standard Deviation
Skewness
Kurtosis

Direct Usage of Embedding Coordinates
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Table 5.3 shows a list of machine learning features we computed from each functional summary listed in
Chapter 3. First of all, we can use each functional summary directly; in the case of signatures, this would
mean taking each coordinate of the signature embeddings as one feature, which we did for all signatures
except the heatkernel and persistence image, as they are higher dimensional.

However, we saw in Section 4.5 that these direct coordinates do not show a clear separability. Addition-
ally, they are so high-dimensional that a machine learning model might have trouble extracting important
information from them. Therefore, they might not be the most meaningful way to use signatures for classi-
�cation, and we additionally compute statistics from the signatures to capture them in just a few numbers,
hoping that such statistics have more meaningfulness than the direct embeddings.

From the Betti curve, for example, we computed the mean, standard deviation, skewness, and kurtosis
of the curve as statistics, which is an approach we saw in [Fel+19]. From the heatkernel, we computed
intensity, and the maximum and minimum of the (absolute of) the embedding, which was inspired from
[ASS23].

We computed the L1 norm of some signatures inspired by [Gid+20]. We initially also computed the L1
Norm of the persistence landscape but later noted that it is the same as the landscape amplitude, which we
already use as a feature. An amplitude of the heatkernel could be similarly computed with the amplitude
function in Giotto TDA [Tau+20] in future work, using the metric “heat”.

In theory, we could directly feed the kernel density estimates into a kernel-based machine learning
model like Kernel SVM [Ped+11]. However, we want to have a holistic solution in which we can combine
heatkernel and persistence image with other functional summaries, which is why we refrain from using
Kernel SVM.

By using a rather large amount of features, we want to reach twomain goals: First, we want to maximize
accuracy by later selecting the features that maximize accuracy. Second, wewant to �nd out which features
contribute particularly much to our classi�cation goal.

Something like an “overall best feature”, performing the best across all existing datasets, does not exist.
The predictive power of features like ours must be assessed over many datasets. If some summary statistics
have a higher predictive power across many datasets than others, this gives researchers valuable heuristics
to decide which features to choose in a classi�cation task. We want to add to this assessment by evaluating
di�erent features over two datasets.

We evaluate the predictive power of the features with two di�erent metrics. One is the built-in fea-
ture importance method that decision-tree-based models in scikit-learn [Ped+11] automatically return;
the other is the accuracy that XGBoost reaches when just using one feature. We show both metrics in
Section 6.2.

To maximize the accuracy, we manually tested which feature combinations work best. We also tested
automatic feature selection algorithms, which, however, did not improve the results.

Baseline Models

When choosing baseline methods to compare our topological approach, we �rst refrained from using pre-
trained models as a baseline model. The fact that pre-trained models were trained on a larger amount of
data might lead to an unfair advantage and make them unsuitable for a direct comparison.

After not yielding good results with LSTMs taking time series segments directly as an input, which we
explained with our small amount of data, we decided to use the same traditional classi�ers instead of deep
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learning models as baseline models, with di�erent features than our topological features. We did not test
deep learning models for computer vision, as we came to the conclusion that using the same classi�ers but
with di�erent features makes the features more directly comparable.

Table 5.4 Traditional statistical features for the time series data.

Data Types Statistics Used for Classi�cation

KATS Statistics

Mean
Variance
Entropy

Lumpiness
Stability
Flat Spots
Hurst

Standard Deviation First Derivative
Crossing Points
Binarized Means

The Test Statistic Based on the KPSS Test
Heterogenity

Histogram mode
Linearity

KATS Level Shift Features Level Shift Index
Level Shift Size

KATS Autocorrelation Features

First ACF Value
(Original TS)

Sum of Squares of First �ve ACF Values
(Original TS)

First ACF Value
(Di�erenced TS)

Sum of Squares of First �ve ACF Values
(Di�erenced TS)
First ACF Value

(Twice-Di�erenced TS)
Sum of Squares of First �ve ACF Values

(Twice-Di�erenced TS)
AC coe�cient First Seasonal Lag

Additional Features

Longest Sequence of Values Above Mean
Longest Sequence of Values Below Mean

Median
Minimum
Maximum

Range between Minimum and Maximum
25th Percentile
75th Percentile
90th Percentile

Number of Peaks (Local Maxima)
Number of Valleys (Local Minima)

Kurtosis
Skewness

The baseline features are all statistical and are shown in Table 5.4 and 5.5. For time series data (Table
5.4), we used features proposed in the Pythonmodule “Kats” [Jia+22]. Additionally, we used some common
self-chosen features such as skewness and kurtosis.
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Table 5.5 Traditional statistical features for the brain imaging data.

Data Types Statistics Used for Classi�cation

Corner Features (FAST Corner Features and Most
Prominent Corner Features)

Direct Coordinates
Corner Count

Mean Corner Position
Corner Density

Convex Hull Area
Bounding Box Area
SD of Positions
Mean Distance

Standard Deviation of Distances
Mean and SD of Angles

Intensity Histogram Features

Direct Coordinates
Mean Intensity

SD
Skewness
Kurtosis
Entropy
Energy
Contrast
Mode
Median

25th, 75th, 90th Percentile

Dense Optical Flow Features

Direct Coordinates
Mean and SD of Flow Magnitudes
Mean and SD of Flow Angles

Mean and SD of Flow Gradient Magnitude
Histogram of Flow Magnitudes
Histogram of Flow Angles

Histograms of Canny Edges

Direct Coordinates
Number of Edges
Edge Density

Mean and SD Edge Length
Mean and SD of Edge Orientation

Local Binary Pattern

Direct Coordinates
Mean Intensity

SD
Skewness
Kurtosis
Entropy
Energy
Contrast
Mode
Median

25th, 75th, 90th Percentile

For image data, [ST94] suggests using colour features as well as texture features and dissimilarity mea-
sures when using traditional Computer Vision. Table 5.5 shows the brain imaging data features we used.
The images are black and white, so we used intensity histograms as colour features, local binary patterns,
edges, and two di�erent kinds of corners as texture features, and optical �ow as a dissimilarity measure.

Parameter Tuning

We tune hyperparameters in a mix of manual tuning, where we track the best hyperparameters and fea-
tures with the open-source software MLFLow [Zah+18], and automatic tuning with Grid Search. We tuned
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the models separately for each type of features (topological and statistical) and each of the Sleep and Anes-
thesia datasets.

Tests with pytest

We performed several tests with pytest [Kre+04] to avoid errors like duplicate rows. The tests fail if there
are duplicate rows or if there are columns that contain labels or indices.

Visualizing the Classification Method for Topological Features

Figure 5.2 Flowchart of the classi�cation algorithm using the topological features of the Anesthesia data. Instruction
nodes are yellow rectangles, input/output nodes are green parallelograms.

Figure 5.2 shows a �owchart of the algorithm for the classi�cation of the Anesthesia data with the
topological features, aiming at giving an overview over the algorithm at a glance.



58

6 Results

Given the promising success of TDA in recent years, we aim to yield good results with our approach
of computing machine learning features with persistent homology and subsequently classifying the data
into consciousness stages with traditional machine learning models. The following chapter will show the
classi�cation results and compare the performance of our topological features with that of more traditional
statistical features.

6.1 Classification Results

Anesthesia Data

Table 6.1 compares the results of both models when using only topological features against only using
statistical features on the Anesthesia data, which consists of brain imaging data as well as EEG/EMG data.
As XGBoost and Random Forest depend on random seeds as a parameter, we compute the results over ten
di�erent random seeds, such that we get a mean accuracy on the �nal test set and a standard deviation.

Generally, topological features outperform the statistical features by far, and when using topological
features, a mix of both data modalities performs best with an accuracy of 99.86% with XGBoost, even
though the accuracy is almost as high (99.76%) when only using brain imaging data.

Table 6.1 Performance comparison of topological features vs. statistical features on the Anesthesia dataset, using
Random Forest and XGBoost.

Data Types Model Topological Features Statistical Features

Brain Imaging XGBoost 0.9976 ± 0.0014 0.8541 ± 0.0145
Random Forest 0.9957 ± 0.0013 0.8059 ± 0.0049

EEG/EMG XGBoost 0.9059 ± 0.0072 0.7384 ± 0.0140
Random Forest 0.5995 ± 0.0098 0.6688 ± 0.0085

Both Modalities XGBoost 0.9986 ± 0.0013 0.8899 ± 0.0075
Random Forest 0.9906 ± 0.0021 0.8357 ± 0.0030

Even when only using the most important topological feature alone (Adcock-Carlsson coordinates), this
leads to an accuracy of 0.9827 ± 0.0018 with XGBoost, such that the model still performs better than with
all of the statistical features (with an accuracy of 0.8899 ± 0.0075).

After Cross Validation experiments with manual feature selection and parameter tuning, using all fea-
tures except the persistence image and the persistence landscape statistics worked best.

Note that combining topological and statistical features leads to worse results than only using topolog-
ical features.

Sleep Data

The Sleep dataset consists only of EEG and EMG data. Table 6.2 compares the results of both models
when using only topological features against only using statistical features. Again, the topological features
perform better than the statistical features with both models. For XGBoost, the mean accuracy is 0.9816
for the topological features and 0.9177 for the statistical features.
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Table 6.2 Performance comparison of topological features vs. statistical features on the Sleep dataset, using Random
Forest and XGBoost.

Model Topological Features Statistical Features
XGBoost 0.9816 ± 0.0014 0.9177 ± 0.0019

Random Forest 0.9571 ± 0.0011 0.9152 ± 0.0016

6.2 Feature Importance

Anesthesia Data

Table 6.3 depicts the XGBoost feature importances of the topological features on the Anesthesia data. It
shows both the “Decision Tree Feature Importance”, which is the signi�cance of the feature in the XGBoost
model and which can be computed with a prede�ned Python function, as well as the “Single-Feature
Accuracy”, which is the accuracy on the test set when only using the feature single-handedly.

Table 6.3 Feature importance on the Anesthesia Data, using XGBoost and both modalities for classi�cation.

Feature Single-Feature Accuracy Decision Tree Importance
Landscape Amplitude 0.8421 ± 0.0067 0.0023 ± 0.0016
Number of Points 0.5699 ± 0.0107 0.0043 ± 0.0018
Persistence Entropy 0.5992 ± 0.0083 0.0024 ± 0.0013
Largest Persistence 0.3240 ± 0.0136 0.0060 ± 0.0027

Adcock-Carlsson Coordinates 0.9827 ± 0.0018 0.0187 ± 0.0074
ATOL vectorizations 0.8293 ± 0.0058 0.0374 ± 0.0081

Persistence Landscape Mean 0.9429 ± 0.0062 0.0167 ± 0.0020
Persistence Landscape Standard

Deviation
0.9640 ± 0.0032 0.0440 ± 0.0054

Persistence Landscape Skewness 0.5568 ± 0.0202 0.0096 ± 0.0025
Persistence Landscape Kurtosis 0.5251 ± 0.0124 0.0072 ± 0.0033

Persistence Landscape Embedding
Coordinates

0.9816 ± 0.0025 0.2220 ± 0.0611

heatkernel Intensity 0.8189 ± 0.0071 0.0050 ± 0.0030
heatkernel Maximum 0.6832 ± 0.0100 0.0030 ± 0.0016
heatkernel Minimum 0.7792 ± 0.0086 0.0019 ± 0.0014
Silhouette L1 norm 0.7429 ± 0.0064 0.0002 ± 0.0002
Silhouette Mean 0.7557 ± 0.0074 0.0018 ± 0.0017

Silhouette Standard Deviation 0.7459 ± 0.0063 0.0066 ± 0.0072
Silhouette Skewness 0.7304 ± 0.0061 0.0030 ± 0.0025
Silhouette Kurtosis 0.6946 ± 0.0098 0.0056 ± 0.0091

Silhouette Embedding Coordinates 0.9816 ± 0.0025 0.1272 ± 0.0372
Persistence Image Intensity 0.2661 ± 0.0070 0.0005 ± 0.0004
Persistence Image Maximum 0.2661 ± 0.0070 0.0003 ± 0.0003
Persistence Image Minimum 0.2936 ± 0.0101 0.0001 ± 0.0001

Betti Curve L1 norm 0.6392 ± 0.0088 0.0010 ± 0.0009
Betti Curve Mean 0.8339 ± 0.0066 0.0014 ± 0.0017

Betti Curve Standard Deviation 0.7120 ± 0.0088 0.0042 ± 0.0038
Betti Curve Skewness 0.7005 ± 0.0092 0.0027 ± 0.0016
Betti Curve Kurtosis 0.6461 ± 0.0084 0.0011 ± 0.0014

Betti Curve Embedding
Coordinates

0.9728 ± 0.0056 0.4510 ± 0.0835

The feature that performs best in the “Single-Feature Accuracy” is Adcock-Carlsson coordinates, even
though some of the direct coordinates of the signatures perform almost as well. Note that we observed
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in Section 4.5 that the Adcock-Carlsson coordinates of our data are particularly separable, which could be
one reason they are so signi�cant.

Interestingly, the feature that performs best in Single-Feature Accuracy is an unstable functional sum-
mary. Recall that we decided to include small-scale holes in our analysis instead of labeling them as noise
and removing them. As unstable functional summaries can potentially pro�t from such small-scale holes
well, the decision to include topological noise apparently turned out to be good, enabling our TDA-based
method to pro�t from local geometric information. However, it could be a further step to test noise removal
against our method.

“Decision Tree Feature Importance” is calculated in xgboost using the default metric “gain”, which mea-
sures the average improvement in loss that a feature brings in the total loss [TC16]. Decision Tree Feature
Importance is by far the highest for the direct embeddings. However, note that to compute the Decision
Tree Feature Importance of a feature consisting of several coordinates, the feature importances of the sin-
gle coordinates were summed up. The high Decision Tree Feature Importance of the embeddings does not
indicate the importance of the single embedding entries, which might be quite low, but still shows that the
overall contribution of the direct embedding vectors is quite high.

Out of the direct embeddings, the embeddings of the Betti curve perform the best in Decision Tree
Feature Importance. As described in Section 3.3, the Betti curve is also an unstable functional summary.
This makes the best-performing features in our classi�cation two unstable features.

In general, we observe that our initial assumption that statistics computed from signatures are more
meaningful than their direct embeddings does not hold. Using statistics instead of direct embeddings,
however, still comes with the advantage of better computational e�ciency during the classi�cation.

Sleep Data

Table 6.4 depicts the same feature importances for the Sleep data. The observations that we made were
quite similar to the Anesthesia dataset. Again, Adcock-Carlsson coordinates perform best in Single-Feature
Accuracy, and a direct embedding vector performs best in Decision Tree Importance, in this case, the stable
silhouette embeddings.

The fact that Adcock-Carlsson coordinates perform the best in Single-Feature Accuracy in both datasets
is worth noting. As there is no overall best (TDA) feature that universally performs best across all datasets,
evaluating the performance of di�erent signatures as machine learning features across many datasets can
turn out helpful.
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Table 6.4 Feature importance on the Sleep Data, using XGBoost and both modalities for classi�cation.

Feature Single-Feature Accuracy Decision Tree Importance
Landscape Amplitude 0.8812 ± 0.0027 0.0089 ± 0.0029
Number of Points 0.7421 ± 0.0044 0.0178 ± 0.0068
Persistence Entropy 0.7769 ± 0.007 0.0072 ± 0.0018
Largest Persistence 0.8740 ± 0.0033 0.0022 ± 0.0008

Adcock-Carlsson Coordinates 0.9843 ± 0.0009 0.0584 ± 0.0032
ATOL vectorizations 0.8899 ± 0.0028 0.0118 ± 0.0022

Persistence Landscape Mean 0.8500 ± 0.0024 0.0016 ± 0.0008
Persistence Landscape Standard

Deviation
0.8566 ± 0.0031 0.0020 ± 0.0008

Persistence Landscape Skewness 0.6585 ± 0.0059 0.0013 ± 0.0002
Persistence Landscape Kurtosis 0.6578 ± 0.0037 0.0006 ± 0.0003

Persistence Landscape Embedding
Coordinates

0.8907 ± 0.0014 0.2286 ± 0.0089

heatkernel Intensity 0.8625 ± 0.0048 0.0040 ± 0.0008
heatkernel Maximum 0.8858 ± 0.002 0.0056 ± 0.0023
heatkernel Minimum 0.8651 ± 0.0038 0.0053 ± 0.0015
Silhouette L1 norm 0.8838 ± 0.0018 0.0068 ± 0.0033
Silhouette Mean 0.8817 ± 0.0021 0.0034 ± 0.0006

Silhouette Standard Deviation 0.8781 ± 0.0028 0.0045 ± 0.0012
Silhouette Skewness 0.6741 ± 0.0056 0.0039 ± 0.0015
Silhouette Kurtosis 0.6712 ± 0.0059 0.0039 ± 0.0008

Silhouette Embedding Coordinates 0.8939 ± 0.0017 0.3092 ± 0.0163
Persistence Image Intensity 0.8792 ± 0.0022 0.0121 ± 0.0049
Persistence Image Maximum 0.8892 ± 0.0018 0.0139 ± 0.0053
Persistence Image Minimum 0.8669 ± 0.0027 0.0051 ± 0.0016

Betti Curve L1 norm 0.7437 ± 0.0031 0.0037 ± 0.0032
Betti Curve Mean 0.7620 ± 0.0031 0.0016 ± 0.0011

Betti Curve Standard Deviation 0.7631 ± 0.0033 0.0108 ± 0.0089
Betti Curve Skewness 0.7124 ± 0.0069 0.0031 ± 0.0013
Betti Curve Kurtosis 0.7187 ± 0.0055 0.0036 ± 0.0018

Betti Curve Embedding
Coordinates

0.7773 ± 0.0056 0.2439 ± 0.0146
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7 Discussion and Outlook

In this master thesis, we analyzed consciousness stages in brain data with the help of persistent homology,
a method in TDA for computing topological holes in data at di�erent spatial resolutions.

While TDA has limitations, such as its inability to distinguish data of di�erent categories [XDR21],
it has had promising successes in recent years. In contrast to purely geometric approaches, TDA detects
topological, qualitative data characteristics. It can capture global and high dimensional features, which are
robust and invariant to transformations such as translation and amplitude scaling, where other methods
such as statistical analyses or also graph theory fail [XDR21].

Our goals were to explore the e�ectiveness of persistent homology in classifying brain states and to
compare the performance of di�erent functional summaries as machine learning features.

Using persistent homology, we created features for machine learning models to classify brain data into
consciousness stages, namely sleep stages on one dataset and anesthesia stages on another. We then eval-
uated two classi�ers with topological features and compared the performance of the topological features
with the performance of traditional statistical features.

On both of our datasets, using traditional features performed signi�cantly better than using statistical
features, with an accuracy of 99.86% versus 88.99% on the anesthesia dataset and an accuracy of 98.16% vs
91.77% on the sleep dataset. TDA therefore appears to be an e�ective tool for classifying brain states.

On our primary dataset, the multimodal “Anesthesia data”, classi�ers performed very well with topo-
logical features computed from the brain imaging data alone but still slightly pro�ted from additional
topological features from the EEG/EMG data.

When comparing the feature importances, the Adcock-Carlsson coordinates, in particular, proved to be
among the best-performing features. Adock-Carlsson coordinates are an unstable functional summary and
might, therefore, pro�t from our decision to include small-scale holes in the analysis particularly much.
During the data exploration phase, we observed that the Adcock-Carlsson coordinates formed distinct
clusters, which supports their e�ectiveness for classifying di�erent consciousness stages.

Persistent homology captures both local geometric and global topological information. In this master
thesis, we pro�ted from its ability to use both �elds by explicitly including small-scale holes in our analysis,
which are traditionally labeled as noise. Unstable functional summaries like Adcock-Carlsson coordinates
can make use of such noise much better.

Detecting sleep and anesthesia stages can have signi�cant applications in medical and scienti�c settings.
For instance, accurate detection of sleep stages can help in diagnosing sleep disorders, while identifying
anesthesia stages could improve patient care during surgery. However, there are ethical concerns when
relying on data science methods, like topological data analysis and machine learning, for detecting con-
sciousness stages. For example, testing the brain function of a patient in a coma could raise questions
about the accuracy and reliability of these methods.

There are limitations to the present study, as we worked with a mouse brain dataset, which may not eas-
ily generalize to human brain data. For computational e�ciency in real-time applications, not all features
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can be used, so selecting a subset, like just the Adcock-Carlsson coordinates, might be necessary. Future
work could enhance the current approach by testing it on human datasets, including fMRI data. Addition-
ally, testing on more diverse datasets and comparing how excluding noise performs could be interesting.

This master thesis contributes to the �eld of Topological Data Analysis by demonstrating the utility
of persistent homology for classifying brain states. We showed that topological features can outperform
traditional statistical methods in certain settings, and we identi�ed the Adcock-Carlsson coordinates as
particularly e�ective features. These �ndings open up exciting possibilities for future research, such as
applying this approach to human data and further exploring its potential in medical diagnostics and real-
time monitoring of consciousness.
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A Appendix

Figure A.1 Silhouettes computed from the Wasserstein barycenter of the EEG anesthesia data, subject m292. Sil-
houette for lowest level of anesthesia on the left, silhouette for highest level of anesthesia on the right.

Figure A.2 Silhouettes computed from the Wasserstein barycenter of the brain imaging anesthesia data, subject
m292. Silhouette for lowest level of anesthesia on the left, silhouette for highest level of anesthesia on the right.

Figure A.3 Heatkernels for homology dimension 0 from the Wasserstein barycenter of the EEG Anesthesia data,
subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia on the
right.
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Figure A.4 Heatkernels for homology dimension 2 from the Wasserstein barycenter of the EEG Anesthesia data,
subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia on the
right.

Figure A.5Heatkernels for homology dimension 1 from theWasserstein barycenter of the brain imaging Anesthesia
data, subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia
on the right.

Figure A.6Heatkernels for homology dimension 2 from theWasserstein barycenter of the brain imaging Anesthesia
data, subject m292. Heatkernel for lowest level of anesthesia on the left, heatkernel for highest level of anesthesia
on the right.
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Figure A.7 Persistence images computed from theWasserstein barycenter of the EEG anesthesia data, subject m292,
homology dimension 0. Persistence images for lowest level of anesthesia on the left, Persistence images for highest
level of anesthesia on the right.

Figure A.8 Persistence images computed from the Wasserstein barycenter of the brain imaging anesthesia data,
subject m292, homology dimension 0. Persistence images for lowest level of anesthesia on the left, Persistence
images for highest level of anesthesia on the right.

Figure A.9 Persistence images computed from the Wasserstein barycenter of the brain imaging anesthesia data,
subject m292, homology dimension 1. Persistence images for lowest level of anesthesia on the left, Persistence
images for highest level of anesthesia on the right.
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