
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Improving Topologically-Regularized
Multiple Instance Learning on Single Cell
Images

Milad Bassil

Thesis for the attainment of the academic degree

Master of Mathematics in Science and Engineering

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Supervisor:
Dr. Carsten Marr, Dr. Bastian Rieck

Advisors:
Salome Kazeminia

Submitted:
Munich, 15. December 2024





I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I

have only used the resources given in the list of references.

Munich, 15. December 2024 Milad Bassil





v

Zusammenfassung

In der biomedizinischen Datenanalyse ist der Mangel an annotierten Daten ein häufiges Problem, und

Multiple Instance Learning (MIL) hat sich als vielversprechender Ansatz erwiesen, um Herausforderun-

gen wie begrenzte Annotationen oder grobe Beschriftungen zu bewältigen. Trotz der Stärken vonMIL gibt

es weiterhin Herausforderungen wie datenintensive Anforderungen, Instabilität im Training und eine An-

fälligkeit für Overfitting bei begrenzten Daten.

Topologische Regularisierung ist eine potenzielle Lösung, die das Training hin zu einer generalisierbar-

eren und robusteren Merkmalsextraktion lenkt. Um topologische Informationen von Datenräumen zu er-

fassen, müssen diesemetrische Räume sein, was bedeutet, dass eine Distanzfunktion über sie definiert wer-

den muss. Eine robuste Distanzfunktion, die in der Lage ist, informative Abstände zu erzeugen und dabei

semantisch invariante Transformationen zu berücksichtigen, ist entscheidend für die Leistung. In den

meisten relevanten Arbeiten wird eine Minkowski-Distanzfunktion über dem analysierten Raum definiert.

Bei der Untersuchung der Topologie von Bildräumen könnte eineMinkowski-Distanzfunktion jedoch nicht

ausreichen. Um die topologische Regularisierung auf Eingabebildräumen zu verbessern, untersuchen wir

verschiedene Distanzfunktionen, die repräsentativere Abstände zwischen den Instanzen liefern können

und dadurch eine robustere Regularisierung der Eingabe- und Latenträume ermöglichen.

Die Effektivität dieser Distanzfunktionen wird auf mehreren synthetischen und realen Datensätzen

getestet. Unsere realweltliche Anwendung konzentriert sich auf Bilder einzelner Blutzellen und bew-

ertet die Auswirkungen dieser Funktionen auf ein topologisch reguliertes Modell zur Identifikation von

Leukämiesubtypen aus Blutausstrichbildern, genannt SCEMILA.

Abstract

In biomedical data analysis, label scarcity is a common issue, and Multiple Instance Learning (MIL) has

emerged as a promising approach to handle limited annotation or coarse labeling challenges. Despite the

strengths of MIL, it still faces issues such as data-intensive requirements, training instability, and suscep-

tibility to overfitting in cases with limited data.

Topological regularization is a potential solution that guides training towards more generalizable and

robust feature extraction. Capturing topological information of data spaces requires them to be metric

spaces, meaning that a distance function must be defined over them. Therefore, a robust distance function

capable of producing informative distances, unaffected by semantically invariant transformations, is cru-

cial for performance. In most relevant literature, a Minkowski distance function is defined over the space

being analyzed. However, when studying the topology of image spaces, a Minkowski distance function

may not suffice. To improve topological regularization on image input spaces, we explore various distance

functions that may yield more representative inter-bag distances, leading to a more robust regularization

of input and latent spaces.

The effectiveness of these distance functions is tested on several synthetic and real-world datasets. Our

real-world application focuses on single blood cell images, evaluating the impact of these functions on

a topologically regularized model for Leukemia subtype identification from blood smear images, called

SCEMILA.
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1 Introduction

Machine learning applications in the biomedical field are rapidly expanding, offering innovative solutions

to complex problems, however, one of the major challenges in this domain is data scarcity[1]. A specific

application of interest in this work is automating the detection of AcuteMyeloid Leukemia (AML) subtypes

using blood smear single-cell images. Automating this process has the potential to significantly reduce

the resources required for diagnosis, such as genetic testing, which is traditionally used to determine AML

subtypes by analyzing chromosomal abnormalities and genetic mutations[2].

In the proposed approaches of [3, 4, 5], blood smear images of a patient are segmented into individual

single-cell images. A prediction is thenmade based on a single label for the collection of segmented images,

framing the task as a Multiple Instance Learning (MIL) problem. MIL is a self-supervised machine learning

paradigm designed to handle data with a set-like structure, where the input consists of bags (collections

of instances) and each bag is associated with a label . Unlike traditional supervised learning, MIL does not

require instance-level labels; instead, it learns to predict the bag’s label based on the instances within it[6].

Typically, anMIL classificationmodel consists of three main components: an instance encoder to extract

features from individual instances, an instance aggregator to combine features from all instances within

a bag, and a bag classifier to predict the label. This architecture has been successfully applied in diverse

areas, such as drug activity prediction, document classification, and computer vision tasks[7][8]. However,

trainingMILmodels is often challenging due to the ambiguity between bag labels and their instances, plac-

ing significant demands on the encoder to produce discriminative representations and on the aggregator

to identify meaningful patterns[9][10]. As a result, MIL models are prone to overfitting, particularly when

faced with limited datasets, necessitating the use of additional regularization strategies.

One promising regularization technique is Topological Regularization (TR), inspired by methods from

Topological Data Analysis (TDA). TR uses multi-scale topological encodings of metric spaces to compute

differentiable losses, guidingmodels to produce latent representationswith structures that mirror the input

data’s topology at multiple scales. This technique has been shown to enhance generalization, robustness,

and interpretability, while also mitigating overfitting risks. By providing a regularization signal from the

data itself, TR helps ensure that the latent spaces are structured meaningfully[11].

To compute topological encodings, pairwise distances between data points in the latent space are re-

quired, meaning the quality of the encoding depends on the quality of these distances. Prior work [12] has

demonstrated that using simple Euclidean distances can improve performance in low-resolution, centered

datasets like MNIST[13] and FashionMNIST[14]. However, as will be shown in this work, when applied

to high-dimensional, non-centered image datasets, the limitations of Euclidean distance become evident,

as it struggles to correlate with semantic labels effectively. This thesis explores these challenges in the

context of high-dimensional, non-centered blood smear images for AML subtype detection, integrating

topological regularization into the MIL framework to address the limitations of traditional approaches.

The main contributions of this work are as follows:

1. We present metrics that quantify the quality of a distance function over an image space and demon-

strate their effectiveness.

2. We offer a collection of distance functions that are better suited for single cell image spaces and

quantify their quality.

3. We propose a new topological loss function, based on [15], to improve both computational efficiency

and model performance.
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2 Background

2.1 Multiple Instance Learning

Multiple Instance Learning (MIL) was introduced in 1997 by Dietterich et al. [16], initially as a binary

classification problem where all instances within a bag were either positive or negative, and the presence

of at least one positive instance implied a positive bag label. Since its inception, MIL has gained attention

due to its ability to address scenarios where labeled data is scarce or difficult to obtain, effectively shifting

the task of recognizing intermediate or hidden labels to the model itself. Over time, MIL has evolved to

encompass more complex problem settings, such as multi-class, multi-membership tasks and cases where

the relationship between instance and bag labels is indirect or unknown—i.e., a positive instance does not

necessarily imply a positive bag label, but instead requires the model to learn this relationship [6]. Despite

significant shifts in the MIL paradigm, its core components have largely remained the same, functioning

as follows:

Let 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} represent a bag 𝐵 containing 𝑛 instances. In MIL, each bag has a single label 𝑦𝐵 ,

where 𝑦𝐵 ∈ {0, 1} for binary classification tasks. Each instance 𝑥𝑖 in bag 𝐵 is encoded using an encoder

function 𝑓 , which maps each instance 𝑥𝑖 to an embedding in a feature space:

ℎ𝑖 = 𝑓 (𝑥𝑖), ℎ𝑖 ∈ ℝ𝑑

where ℎ𝑖 is the encoded representation of instance 𝑥𝑖 in a 𝑑-dimensional space. The set of embeddings

{ℎ1, ℎ2, . . . , ℎ𝑛} is then combined using an aggregation function 𝑔, producing a single bag-level embedding

ℎ𝐵 for the entire bag:

ℎ𝐵 = 𝑔(ℎ1, ℎ2, . . . , ℎ𝑛), ℎ𝐵 ∈ ℝd’

where ℎ𝐵 is the encoded representation of the bag B in a d’ dimensional space. Typically, d=d’.

The aggregation function𝑔 varies depending on theMIL strategy; common choices include max or mean

pooling. Finally, the bag-level embedding ℎ𝐵 is passed through a classifier 𝑐 to predict the bag label 𝑦𝐵 :

𝑦𝐵 = 𝑐 (ℎ𝐵), ℎ𝑖 ∈ ℝcl

where cl is the number of classification classes.

In a simple binary classification setting, 𝑐 could be a sigmoid function applied to a linear transformation

of ℎ𝐵 :

𝑦𝐵 = 𝜎 (𝑤⊤ℎ𝐵 + 𝑏)

where 𝜎 is the sigmoid function, and𝑤 and 𝑏 are parameters learned during training.
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Figure 2.1 This is a classic MIL architecture, where B ,n, 𝑥𝑖 , ℎ𝑖 , ℎ𝐵 and 𝑦𝐵 are bag, bag size, input instance, instance

latent representation vector, bag latent representation vector and bag level class probability distribution, respectively.

A detailed description is given in section 2.1.

2.2 Manifold Hypothesis in Machine Learning

In machine learning, the manifold hypothesis suggests that high-dimensional data—such as images, audio,

and text—can be effectively represented within a lower-dimensional space [17]. This hypothesis is based

on the idea that such data has a lower intrinsic dimensionality than it’s ambient space’s dimensionality. For

instance, consider images: the set of coherent images that can be taken with a camera at a given resolution

𝑅 represents only a tiny subset of all possible pixel configurations at that resolution. To illustrate that,

think of randomly generated images of resolution 𝑅. The probability of a random valued image as seen

bellow has an extremely low probability of being coherent, illustrating the sparse nature of meaningful

data within the high-dimensional space [17]. To demonstrate that, we randomly generate 64 images in fig

2.2, with not one looking remotely coherent, thus showing that coherent images occupy a small subspace

of the set of all images.

Figure 2.2 64 100x100 grayscale images generated by a uniform distribution over possible images. We can see all 64

images are incoherent, meaning an image without anything meaningfully in it, demonstrating that set of coherent

images occupy a very small subspace of all possible images.
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We consider a ball of radius 𝜖 and of dimension equal to that of the image, centered around a coherent

image 𝑥 . This region, for a small enough 𝜖 , will consist entirely of coherent images. In practice, the ball

around the coherent image corresponds to the imagewith additive uniformly generated noise ofmagnitude

𝜎 = 𝜖 .

As an example, see the figure below, where 𝑥 represents the original image of the parrot, and all other

images are samples within the ball for varying 𝜖 values. This demonstrates that the subspace of coherent

images is, at least piece-wise, continuous [18].

Figure 2.3 Center image is the original and the rest are the original image but varying magnitudes of added noise,

demonstrating that the subspace of coherent images is piece-wise continuous.

2.3 Topology

Topology is a branch of mathematics that studies the properties of spaces that are preserved under continu-

ous transformations [19]. Congruently we call𝑇 a topological feature extractor if it satisfies the following:

For any topological space 𝑋 and for any continuous transformation 𝑓 : 𝑋 → 𝑋 ′
(where 𝑋 ′

is another

topological space), the feature extractor must yield the same result for all continuous transformations

applied to the space. Formally, we can express this property as:

𝑇 (𝑋 ) = 𝑇 (𝑓 (𝑋 )) ∀𝑓 : 𝑋 → 𝑋 ′
continuous

This means that the extracted features remain invariant under continuous deformations of the space 𝑋 .

Thus, a topological feature extractor captures the essential topological properties of the space, independent

of how it is continuously transformed.

From a geometric perspective, continuous transformations can be thought of as actions like stretching,

twisting, and bending, but without tearing or gluing. Topology focuses on properties that remain un-

changed under these transformations. A classic example used to illustrate topology is the equivalence of

a mug and a doughnut, as well as a cube and a sphere, as shown below.
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Figure 2.4 It is possible to continuously deform a cube into a sphere. This implies, by the definition of a topological

feature, that a sphere and a cube have the same topological features. An example of a topological feature of these

two shapes is the absence of a hole. This image was taken from [20].

Figure 2.5 It is possible to continuously deform a mug into a doughnut. Therefore, by definition, a doughnut and a

mug are topologically similar. This image was taken from [20].

Based on this definition of topology, one would expect themug and doughnut to have similar topological

features, which are distinct from those of the cube and sphere, which are themselves similar. From this,

we can surmise that a function which counts the number of "holes" in a topological space is a type of

topological feature extractor, as no matter how one continuously deforms a mug, the hole in the handle

will not disappear [21].

2.4 Persistent Homology

Persistent Homology is a topological data analysis method that studies the shape of data points in a met-

ric space by identifying and tracking topological features that emerge and disappear at different scales.

This technique encodes structure as simplicial complexes, which are combinatorial elements representing

shapes in different dimensions: a 0D simplex corresponds to an isolated points, a 1D simplex to an edge, a

2D simplex to a triangle, a 3D simplex to a tetrahedrons and extending to higher dimensions, as shown in

fig 2.6. A simplicial complex is a collection of simplices.
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Figure 2.6 On the left we have the input structure as a non-directional graph and on the right we see examples of

different degree simiplicial complexes that are contained in the graph. This image was taken from [22].

To give a more rigorous definition, a simplicial complex 𝐾 is a collection of simplices that satisfies the

following two conditions:

1. If 𝜎 ∈ 𝐾 , then every face of 𝜎 is also in 𝐾 .

2. If 𝜎, 𝜏 ∈ 𝐾 , then 𝜎 ∩ 𝜏 is either empty or a face of both 𝜎 and 𝜏 .

Here, a simplex is defined as the convex hull of a set of affinely independent points in some Euclidean

space, and its faces are the convex hulls of subsets of these points, meaning we get some vector represen-

tation of the shapes.

The advantage of encoding topological spaces as simplicial complexes, is that we can calculate the topo-

logical invariant on the simplices instead of calculating it directly on the structure, which is not necessarily

feasible on a computer. This is done by finding the homology groups in that represent these topological

feature or those features which are not affected by continuous transformation.

Bellow we describe how we can calculated and find these homology groups.

Let 𝑋 be a topological space. The homology groups of 𝑋 , denoted by 𝐻𝑛 (𝑋 ) for 𝑛 ≥ 0, are defined as

follows[11]:

1. Construct a sequence of abelian groups (or modules) called chains:

· · · → 𝐶𝑛+1(𝑋 ) → 𝐶𝑛 (𝑋 ) → 𝐶𝑛−1(𝑋 ) → · · · → 𝐶0(𝑋 ) → 0

where each𝐶𝑛 (𝑋 ) is the group of 𝑛-chains, consisting of formal sums of 𝑛-simplices in topological space

𝑋 .

2. Define the boundary map 𝜕𝑛 : 𝐶𝑛 (𝑋 ) → 𝐶𝑛−1(𝑋 ) for each 𝑛 which has the property that 𝜕𝑛−1 ◦ 𝜕𝑛 = 0.

This ensures that the image of 𝜕𝑛 (the boundaries) is contained within the kernel of 𝜕𝑛−1 (the cycles).
3. The 𝑛-th homology group, 𝐻𝑛 (𝑋 ), is defined as the quotient:

𝐻𝑛 (𝑋 ) =
ker(𝜕𝑛)
im(𝜕𝑛+1)

where ker(𝜕𝑛) is the group of𝑛-cycles (chains with no boundary) and im(𝜕𝑛+1) is the group of𝑛-boundaries
(boundaries of (𝑛 + 1)-chains).
The homology group 𝐻𝑛 (𝑋 ) provides an algebraic invariant that captures information about the 𝑛-

dimensional holes in 𝑋 which are the topological features of interest:

• 𝐻0(𝑋 ) represents the connected components of 𝑋 .

• 𝐻1(𝑋 ) represents loops or 1-dimensional holes.
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• 𝐻2(𝑋 ) represents 2-dimensional voids, and so on.

To capture changes across scales, Persistent Homology uses a filtration process that incrementally builds

simplicial complexes by connecting points within a threshold distance, starting from isolated points and

adding connections as the scale parameter increases. The filtration used in this work is the Vietoris-Rips

complex, which adds edges and higher-dimensional simplices depending on the distance between points, as

shown in the figure below. The filtration produces a sequence of complexes, each containing the preceding

ones as subsets. Persistent Homology then tracks when features, such as loops or clusters, appear (birth)

and merge into larger structures or vanish (death) as the scale increases, effectively encoding the data’s

topological characteristics across multiple scales. To recapitulate, the word persistent refers to the fact

that this method studies or tracks the persistence of topological features as some value is changed; in this

case, that value is scale. The wordHomology refers to the fact that we are mapping topological structures

in the space to algebraic simplicial complexes that are homologous to the topological structures. This

means that we can perform operations on the simplicial complexes that respect the topological structures

they represent.

Figure 2.7Topology Calculation and Encoding Approach;A Start with a point cloudwith a distance function defined

on space, as the red bars represent the first order topo-features at scale = 0 we can see the number of features is equal

to the number of points since every point is an island not connected to anything else . B Increase scale and connect

the points whose distance is below the scale threshold, connecting points causes one of them to die, hence the bar

stops. C Here we observe the birth of 2 first order topological features, holes, 2 blue bars are drawn to represent

them. D Stop one of the blue bars as the cycle disappeared at a high enough scale. E From the persistence barcode

calculate the persistence diagram. This image was taken from [20].

2.5 Topological Regularization

Topological regularization is an emerging technique in machine learning aimed at preserving and exploit-

ing the topological properties of data. Traditional regularization methods, such as L2 regularization, focus
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on penalizing the magnitude of model parameters to prevent overfitting; however, these approaches do

not explicitly consider the structural relationships within the data. Topological regularization addresses

this gap by incorporating information about the "shape" or intrinsic structure of the data manifold.

In the work [23], topological regularization was used to improve the performance of a binary classifier.

Using a piece wise linear approximation of the classification level set (the domain for which the classifier

predicts the same probability for both classes), the authors calculate an approximate topological signature

for the class boundary. They then attempt to topologically regularize the network by adjusting the critical

points in the boundary approximation, which leads to the disappearance of low-persistence topological

features, effectively reducing the complexity of the boundary between the classes. In the works [24] and

[25], topological regularization is used to inject a topological prior into the training ofmodels. For example,

if the number of clusters to be expected is known, this information can be used to bias the network ormodel

by injecting the topological prior into the latent space. In [25], the embedding of human cells at different

stages of the cell cycle, where timestamps or ages of cells are available, is presented as an example of an

application with a topological prior. Using the timestamps, one can bias the embedding model to respect

the connectivity (a topological feature) of cells of similar age, thereby preserving the continuous nature of

cells in the embedding.

All of the aforementioned works require a differentiable topological loss function to calculate gradients

for backpropagation in the network. The implementation of topological loss functions while retaining

auto-differentiability is one of the bigger challenges in this field.

In [7], the topological difference or loss between multiple networks with different modalities is calcu-

lated to guide the training of a multi-modal network. The topological loss acts as a guide that helps the

model selectively leverage informative and cohesive modalities while disregarding redundancies. In this

application, the need to calculate an explicit gradient is avoided by using the loss to simply guide the

training and not update the parameters themselves. However, it still acts as a regularizer, as it controls the

complexity of the model by limiting its inputs, instead of influencing its parameters directly.

In [15], a differentiable topological loss function is defined between an autoencoder’s latent space and

its input space. The intuition behind this is to let the model be informed by the input space’s topology.

The hope is to prevent it from creating fake topological features by overgeneralizing or from destroying

potentially informative topological features in the input space as they propagate through the layers. This

work showed competitive autoencoder reconstruction and latent space distribution performance; however,

it was only tested on relatively small-dimensional data, ranging from 3-dimensional synthetic data to

CIFAR-10, which is 32x32 RGB. Additionally, a Euclidean metric space was assumed on both the input and

latent space, severely limiting the expressiveness of the topological encoding. In a follow-up work [12],

different distance schemes were attempted, namely random convolutions and image perceptual distance,

with no marked improvement over classic Euclidean distance.

Our work challenges the conclusion of [12], citing the following reasons;

1 In [15] only low resolution images were used, where euclidean distance retains some of its expres-

siveness.

2 All datasets that were used MNIST, FMNIST and CIFAR10 are centered, rotationally static image

datasets, thus euclidean distance’s downsides are mitigated.

3 The topological loss, as formulated in that work, is not expressive enough to use the improved

distance functions proposed in [12].
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3 Methods

This chapter will go over themethods used in the development of the baselineMILmodel, the topologically

regularized MIL model and the distance function evaluation techniques. All described methods have been

implemented in the following repository: https://github.com/sewerrenegade/Master_Thesis_Code

3.1 Multiple Instance Learning Model

The deep model used in this work follows the classic MIL structure with an encoder, aggregator and clas-

sifier.

3.1.1 Instance Encoder

The encoder is based on the ResNet18 [26] deep convolutional neural network, which employs 3x3 and 1x1

convolution kernels across 17 layers. It has about 11.7 million trainable parameters and was developed for

RGB images of dimension 224x224. For our application, we remove the last two layers of the network—the

classification head and the average pooling layer—and replace them with two convolutions followed by

one fully connected layer. As an additional modification, we add a dropout layer to the encoder at four

different depths. The resultant encoder network has 12.5 million trainable parameters. Further variants of

this encoder were implemented, such as:

1 A version of ResNet18 whose input layers were modified to work on grayscale images.

2 Using DinoBloomV2 S [27] as an instance encoder, DinoBloom is a foundation model trained on

blood cell images using contrastive learning. Gradients are not propagated through DinoBloom, it

is treated a frozen encoder.

3 ResNet32 network trained on single cell level labels [28], no gradients were propagated through this

encoder since the network weights are not available, instead saved latent codes used.

Figure 3.1 This is the our modified ResNet18 implementation, we added 4 dropout layers and replace the last two

layer with more convolutions, fully connected and pooling layers as described in section 3.1.1.

3.1.2 Instance Aggregator

The instance aggregator is responsible for producing a bag level encoding using the encoded instances in

the bag. In out implementation we use the same aggregator structure as [3] and [4]. Multihead attention

pooling is an extension of the attention mechanism that aggregates input representations by learning

multiple distinct attention heads. Each attention head computes attention scores based on learnable query,



3 Methods

12

key, and value projections, enabling the model to capture diverse aspects of the input data. The outputs

of the heads are concatenated and linearly projected to form a summary representation. This approach is

particularly effective for tasks such as text classification andmultiple instance learning, where it aggregates

information from a set of inputs into a compact, task-specific embedding. In out case we use the pooling

mechnism to pool the instance level codes into a bag level code.

3.1.3 Classifier Head

The classifier, which finally outputs a predicted label, has two FC layers separated by a normal ReLU

function, with the output of the first FC layer being 64 and the output head being 5-dimensional.

Figure 3.2 This figure shows an overview of our baseline multiple instance learning pipeline without any topological

regularization. It is training only on classification loss.

3.2 Baseline Multiple Instance Learning Approach

Tomeasure the impact of topological regularizationwe setup a structured PyTorch Lightning based pipeline,

that is externally configurable to run multiple approaches with different settings. To establish a base-

line for comparison we trained our model without any topological regularization, carefully optimizing

many hyper-parameters, which will be detailed later. For a fair comparison, the same optimized hyper-

parametersweremaintained in the subsequent experiments, including topologically regularized approaches.

3.2.1 Data Preperation and Preporcessing

To train our model we used the AML Cytomorphology MLL Helmholtz dataset [29], which is comprised

of patients diagnosed with one of four prevalent subtypes of acute myeloid leukemia (AML). The sub-

types were identified based on genetic abnormalities and morphological features, and are named: NPM1,

PML::Para, RUNX1::RUNX1T1 and CBFB::MYH11 of which there are 45, 51, 38 and 47 patients respec-

tively, additionally the dataset includes 61 control patients. Each patient in our dataset has a 99 to 500

single cell images, with the average number of instances of the bags being 431 and a standard deviation

of 107. The individual single cell images are 144x144 pixels with RGB channels encoded in a tif format,

with them all existing on the same magnification scale of x40, making each pixel equivalent to 0.172𝜇m.

In the referenced dataset, 53 patients are not included as their data is exclusively shared with researchers

at Helmholtz, however our observations indicate the impact of this is marginal. In our experiments, we

allocated 21% of the data to the test set, while applying a fixed 4-fold cross-validation on the remaining

79%. As a result, each training run approximately used a 20%/20%/60% split for test, validation, and training

data, respectively.

The private Helmholtz version of the dataset includes a 5-patient, fully annotated meta file with both

patient-level and single-cell-level annotations. This data was not used for training but was instead em-

ployed to visualize the quality of the single-cell latent space.

3.2.2 Data Augmentaiton and Resampling

To improve our model’s ability to generalize, we applied randomized augmentations to our single-cell

images. The augmentations considered in our pipeline include color jitter, horizontal and vertical flips,
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Figure 3.3 Our data is organized as such, we have a patient level AML subtype diagnosis and a corresponding set

of single cell images, with images per bag ranging from 99 to 500.

sharpness adjustments, rotation, translation, Gaussian blur, and Gaussian noise. Each augmentation was

applied independently with a binomial distribution, such that approximately 50% of all images were aug-

mented by one or more transformations. These augmentation settings were validated by an expert pathol-

ogist to ensure they do not destroy important morphological features relevant to diagnosing acute myeloid

leukemia.

In addition to other strategies, we resampled underrepresented classes, such as RUNX1::RUNX1T1,

which has 25% fewer samples than the control group, to mitigate the negative effects of class imbalance in

the dataset. It should be noted that resampled bags or patients have different augmentations applied, so

the resampled data points vary.

The test set was excluded from all augmentation and resampling strategies to maintain consistency and

ensure reliable evaluation of model performance.

3.2.3 Loss Function

A cross-entropy (CE) loss function, also referred to as MIL loss, was used for the multi-class classification

task. The cross-entropy loss function was enhanced with exponentially decaying label smoothing. The

equations for the standard and smoothed cross-entropy loss functions are as follows:

L𝐶𝐸 = −
𝐶∑︁
𝑖=1

𝑦𝑖 log(𝑝𝑖)

L𝑆𝐶𝐸 = −
𝐶∑︁
𝑖=1

(
(1 − 𝑠)𝑦𝑖 +

𝑠

𝐶

)
log(𝑝𝑖)

Where𝐶 is the class count, 𝑦𝑖 is the index of a one-hot encoded vector corresponding to the label, 𝑝𝑖 is the

predicted probability for the class indexed with 𝑖 , and 𝑠 is the smoothing factor.

The use of smoothing helps counteract the bias where the model was inclined to predict leukemia cases

with constant low certainty while showing high certainty for healthy controls. We hypothesize that the

model gets stuck in a local minimum because the ratio between rewards for certainty and penalties for

uncertainty is too low. Consequently, the smoothing reduces the reward for high-certainty predictions.

Examining the smoothed cross-entropy equation reveals that smoothing diminishes the reward for high-

certainty predictions. The smoothing factor decays exponentially to zero, ensuring it does not interfere

with the convergence of the loss function. The cross-entropy loss function was additionally modified to

allow for class weighting. Class weighting scales the loss function according to the rarity or frequency

of occurrence of a class in the dataset, it follows this equation normal and smoothed cross entropy are

respectively:

LCEweighted = −
𝐶∑︁
𝑖=1

𝑤𝑖𝑦𝑖 log(𝑝𝑖)
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(a) Samples before augmentation.

(b) Samples after augmentation.

Figure 3.4 Data samples before and after the application of image augmentations, shown as two separate parts.

LSCEweighted = −
𝐶∑︁
𝑖=1

𝑤𝑖

(
(1 − 𝑠)𝑦𝑖 +

𝑠

𝐶

)
log(𝑝𝑖)

where𝑤𝑖 is defined by:

𝑤𝑖 = (1 −weighting_factor) +weighting_factor × 𝑁total

𝐶 · 𝑛𝑖

where 𝑁total is the dataset size, 𝐶 is the class count and 𝑛𝑖 is number of data samples belonging to class 𝑖

and the weighting_factor is a value between 0 and 1 that determines the strength of the class weighting.

A value of 0 means no class weighting is applied, while a value of 1 signifies full class weighting.

3.2.4 Epochs

A maximum of 250 epochs was set for training. However, to mitigate the risk of overfitting and save

on computational time, an early stopping mechanism was incorporated. The mechanism monitors the

validation loss, terminating training if no improvement is observed over a window of 50 epochs. For

implementing early stopping, we used the native PyTorch Lightning functionality.

3.2.5 Batch Size

A batch size of 1 was used during training, but we compensated for this by accumulating 32 gradients

before performing an optimization step. Although this approach is computationally slower and does not
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fully leverage the parallelism of GPUs, it was necessary due to the large and variable input size. The large

input size made it challenging to train on GPUs with less than 13GB of memory, especially with 4 instances

of data loaders. Furthermore, the variable input size of the model prevents PyTorch from fully utilizing

its computational optimizations, potentially leading to suboptimal performance during both training and

inference. It is important to note that there are no significant differences in model performance when

using different batch sizes or gradient accumulation, aside from the impact on computational speed.

3.2.6 Learning Rate Control

An Adaptive Moment Estimation (Adam) optimizer, with an initial learning rate of 0.00005, was employed.

Adam combines gradient momentum and the variance of the gradient to compute an adaptive gradient

magnitude. To further control the learning rate, we used PyTorch’s ReduceLROnPlateau scheduler, which

monitors validation accuracy. If the validation accuracy plateaus for more than 20 epochs, the scheduler

reduces the learning rate by a factor of 2. This strategy helps the model adjust its learning rate to achieve

better loss convergence.

3.2.7 Checkpointing and Model Selection

A custom checkpointing and model selection function was developed to optimize model parameter check-

pointing based on dual metrics: validation accuracy and validation CE loss. The method tracks these

metrics at each epoch and selectively saves up to k model versions, chosen based on accuracy as the pri-

mary criterion. The function stores the k models that achieve the highest validation accuracy. For most

observed cases, there were multiple checkpoints that share the same accuracy; the function uses validation

CE loss as a tie-breaking metric, picking models with lower loss values among those with equal accuracy.

At the end of training, the top-ranked model among the saved checkpoints is chosen as the final model.

This strategy ensures that both high accuracy and stability are considered in selecting the optimal model

configuration.

3.2.8 Other Regularization Techniques

Dropout was added into the encoder model at four distinct depths, as discussed in Section 3.1.1, using a

10% dropout rate as a regularization technique. Dropout is commonly used in neural networks to prevent

overfitting by randomly ignoring a proportion of neurons during the training process. This forces the

model to learn redundant and distributed representations of the input by preventing dependence on certain

limited features, which makes the network more robust and generalizable. By adding dropout at multiple

levels of the ResNet18 based encoder, we enhance the network’s capacity to capture diverse features across

depths while reducing the likelihood of overfitting to the training set.

Additionally, we incorporated an L2 regularization on themodel parameters in the form of weight decay.

It penalizes large parameter values, enhancing the model’s generalization capabilities. Weight Decay is

equivalent to adding the L2 norm of the parameters to the loss function; however, it is more efficient as no

gradient calculation from the loss function is required. The gradient is simply calculated as shown below:

LL2reg(w) = LCE(w) + 𝜆
2

∑︁
𝑖

𝑤2

𝑖

𝜕LL2reg

𝜕𝑤𝑖

=
𝜕LCE

𝜕𝑤𝑖

+ 𝜆𝑤𝑖

Using gradient descent with a learning rate 𝜂, the weight update with 𝐿2 regularization becomes:

𝑤
(𝑡+1)
𝑖

= 𝑤
(𝑡 )
𝑖

− 𝜂
𝜕Lreg

𝜕𝑤𝑖

= 𝑤
(𝑡 )
𝑖

− 𝜂
(
𝜕L
𝜕𝑤𝑖

+ 𝜆𝑤 (𝑡 )
𝑖

)
= (1 − 𝜂𝜆)𝑤 (𝑡 )

𝑖
− 𝜂 𝜕L

𝜕𝑤𝑖

Weight Decay is simply the strategy of not adding an L2 term to the loss function but instead multiplying

the old weights𝑤
(𝑡 )
𝑖

by a factor of 1 − 𝜂𝜆, as the equation above shows equivalency. Setting 𝜆 to 0 shows

what would happen without L2 regularization.
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3.2.9 Logged & Tracked Metrics

Weights and Biases (wandb) was used as the primary platform for logging all relevant training and ex-

perimental information, providing wide and modular tracking of both quantitative metrics and system

performance data. The platform facilitated efficient monitoring and visualization throughout our devel-

opment by logging such elements as:

1 Quantitative Metrics: Per step and epoch tracking of key performance indicators such as training

and validation accuracy and loss.

2 Printed Messages: Systematic logging of custom messages generated during the training process,

capturing important checkpoints and debugging information.

3 Image Samples: Recording visual data outputs, such as validation and training per epoch confu-

sion matrices. Additionally, images were used to visualize 2D distance preserving PHATE[30] and

UMAP[31] down-projections of both instance level and bag level latent code representations, the

points were shaped and colored according to their label.

4 Hardware Information: Detailed tracking of of system hardware specifications, including CPU

and GPU model, memory capacity and bandwidth helping with reproducibility and optimization.

5 Resource Utilization: Real-time logging hardware utilization like memory I/O, CPU usage and

frequency, GPU and GRAM utilization to name a few.

6 Training Status: Current epoch, run health, creation and run time as well as checkpointing status.

7 Results: Final training outcomes, including best performing model checkpoints, test accuracies,

recalls and precisions

8 Model & Training Configurations: Systematic logging of custom messages generated during the

training process, capturing important checkpoints and debugging information.

3.2.10 Variability Control

To ensure reproducibility and consistency across experiments, a random seed was fixed for all random

number generation processes involved in the training and evaluation of the model. A seed of 42 was set

for Torch, Numpy, and Python’s inbuilt random module. This ensures that operations relying on random-

ization yield the same results. Furthermore, other random processes, such as the order of the data points

in the data loader, were randomized in a controlled way. Similarly, dimensionality reduction techniques

were performed with a fixed seed.

PyTorch’s cuDNN backend settings were not configured to maintain consistent behavior. Unlike the

previous approaches, cudnn.deterministic was set to false, since its impact on computational performance

was deemed too big.

3.2.11 Configuration Method

The experimental configuration for this project was managed using Facebook’s Hydra library, which al-

lows for the writing of modular and hierarchical configurations using YAML files. By using Hydra’s inher-

itance functionality, a structured hierarchy of configuration files was built, allowing for clear organization

and modification of parameters across different versions or variants of a base experiment. This integration

into the pipeline is extensive, encompassing the configuration of all the mentioned hyperparameters in

this section. It facilitates robust control over the experiments, without the need to change the codebase.

This flexibility allows for streamlined and reproducible experimentation.
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3.2.12 Hyperparameter Optimization

For hyperparameter optimization, the wandb sweeper was utilized to implement a Bayesian hyperparam-

eter optimization strategy. This approach allows for efficient exploration of the hyperparameter space

by iteratively refining the sampling strategy based on observed performance metrics, such as validation

accuracy.

The optimization process begins with a prior probability distribution, 𝑝 (𝜃 ), over a subset of the hyper-
parameter space, where 𝜃 represents the hyperparameters of the model. As training runs are executed

with different hyperparameter settings, the performance outcomes are used to refine this distribution into

a posterior probability distribution, 𝑝 (𝜃 | 𝐷), conditioned on the observed data𝐷 . This refinement is based

on Bayes’ theorem:

𝑝 (𝜃 | 𝐷) = 𝑝 (𝐷 | 𝜃 )𝑝 (𝜃 )
𝑝 (𝐷) ,

where:

• 𝑝 (𝜃 | 𝐷): The posterior distribution, reflecting updated beliefs about the likelihood of the hyperpa-

rameters given the observed data.

• 𝑝 (𝐷 | 𝜃 ): The likelihood, representing the probability of observing the data 𝐷 given specific hyper-

parameters 𝜃 .

• 𝑝 (𝜃 ): The prior distribution, encoding initial beliefs about the hyperparameter space.

• 𝑝 (𝐷): The evidence or marginal likelihood, ensuring normalization.

In this project, the prior distribution 𝑝 (𝜃 ) was defined based on general ranges and domain-specific

heuristics. For multiplicative hyperparameters, such as learning rate or weight decay coefficients, log-

scaled prior distributions were employed to better capture the variations in scale.

The wandb sweeper iteratively updates the sampling strategy using the posterior distribution, guiding

the search toward hyperparameter regions with higher likelihoods of optimal performance. This efficiency

is achieved by focusing on promising areas of the hyperparameter space, rather than sampling randomly

or exhaustively.

To facilitate this process, wrapper scripts were developed to interface the wandb sweeping API with

Hydra configuration files. This integration allowed the sweeper to access and optimize virtually any pa-

rameter in the model training pipeline, ensuring a seamless and flexible hyperparameter optimization

process.

3.2.13 Compute Hardware

Experimentswere conducted using a combination of personal computing resources and the high-performance

computing (HPC) system at Helmholtz Munich. The primary development environment was set up on a

laptop equipped with an Intel Core i7 processor and 16 GB of RAM. A configuration file set up to run the

pipeline without a GPU was used there, which facilitated initial experimentation and debugging. Addi-

tionally, a desktop PC with an i7 processor, 32 GB of RAM, and a GTX1080 GPU was utilized for more

resource-intensive tasks and GPU-related debugging. For large-scale experiments, the HPC system was

leveraged, providing access to multiple GPU nodes with a wide range of GPUs and substantial memory

resources. This heterogeneous computing environment enabled the execution of extensive hyperparam-

eter sweeps and model training sessions while optimizing resource utilization across different platforms.

The exact hardware specifications of the HPC are detailed here [32].
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3.3 Topologically Regularized Multiple Instance Learning Approach

To measure the effectiveness of the different topological regularization strategies, we designed topolog-

ically regularized variants of the aforementioned baseline experiment. This section will describe the

methodology used to produce these experiments. Unless explicitly stated, these experiments described

here were run with the same methods outlined in Section 3.2.

Figure 3.5A complete overview of the topological regularization process: it starts with picking 2 distances functions

𝐹𝐼 and 𝐹𝐿 to transform the input and latent spaces into metrics spaces and calculate a distance matrix for each. Then

a topological signature is calculated for each space, called 𝜋𝑋𝑏𝑚 and 𝜋𝑍𝑏𝑚 . Using 𝜋𝑋𝑏𝑚 and 𝜋𝑍𝑏𝑚 we calculate a

differentiable topological loss.

3.3.1 Data Preperation and Preporcessing

To apply topological regularization between two feature spaces, as discussed in Section 2.5, we must com-

pute a topological encoding for each space. Creating this encoding requires the pairwise distances between

all points in the space, also known as the "distance matrix." As described in Section 2.5, this matrix is con-

structed by calculating distances across all points in the dataset using a specified distance function.

In this study, we explored five different datasets, each potentially combined with various sampling

strategies, transformations, and variations, alongside several distance functions, some of which are para-

metric. Each unique combination of dataset and distance function influences the resulting topological en-

coding, ultimately impacting the regularization applied during training. Given the computational intensity

of certain distance matrix construction methods, we found that real-time calculation during training was

infeasible in some cases, significantly slowing down training or even making it impossible.

To overcome this limitation, we chose to precalculate the necessary distance matrices before the start of

training. This collection of precomputed data, referred to as the "topological dataset," is generated once per

topology configuration and is stored for future use. To create a topological dataset, one requires 2 things:

1 A fully configured dataset which takes an index as an input and outputs a bag-like structures with

at least 2 instances inside. This dataset should have all its configurations set, like sampling strategy,

augmentations and transformations.

2 A fully configured distance function d that takes 2 instances and outputs a positive scalar. The other

2 criteria defining a distance function are required as well, namely d(x,x) = 0 for all possible values

of x and d(x,y) = d(y,x)
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Figure 3.6 This figure illustrates how topological datasets are handled in our pipeline. The output of a topological

set is bag data, a set of n image, while the bag distance matrix is a nxn symmetric zero-diagonal square matrix, where

𝑎i,j is the distance between the 𝑖th and 𝑗 th image in the bag.

Each topological dataset is associated with a unique hash based on relevant experimental parameters,

ensuring that previously computed datasets are reused if the settings remain the same, while new config-

urations prompt a fresh calculation.

Furthermore, the topological dataset maintains the order of instances within each bag, preserving con-

sistency between the distance matrices of the input space and the latent space. To avoid dimensionality

or scale variations in the distance function from impacting the topology calculations, we normalize all

distance matrices within the topological dataset. Once generated, this dataset is appended to the standard

training dataset of the base model, allowing the topological regularizer to access precomputed distance

matrices for efficient, differentiable loss calculation during training.

This approach to precalculation and careful dataset management enables the topological regularization

process to operate seamlessly, ensuring that training remains efficient without compromising the com-

plexity of the topological encoding.

3.3.2 Distance Functions

Topological regularization experiments were implemented with the distances bellow for comparison.

Minkowski Distances

The Minkowski distances are the most well known family of distance functions, they are defined as such:

𝑑 (x, y) =
(

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |𝑝
) 1

𝑝

this distance is called the Euclidean distance when p=2 and is called Manhattan distance when p=1.

Random Convolutions Distance

Convolutional neural networks (CNNs) have been an essential component of the success of deep networks

in computer vision applications. Due to their local extraction properties, CNNs provide a strong inductive

bias for working with image spaces. The following work demonstrates that even randomly initialized

convolutional neural networks can serve as rich feature extractors [33][34]. In line with this approach

[12], we use random convolutions to transform our input into a lower-dimensional space, which is then

flattened, and the Manhattan distance is computed, as seen in this equation:

𝑑 (x𝑖 , x𝑗 ) = ∥flatten(𝐹 (x𝑖)) − flatten𝐹 (x𝑗 ))∥1
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Where F represents a randomly initialized three-layer CNN that employs ReLU activations between the

convolutional layers. The architecture features a kernel size of 4, with the number of channels progres-

sively increasing from 1 or 3 to 12, then to 24, and finally to 48.

Learned Perceptual Distance

In the work of [35], a similarity metric was developed based on the latent space embeddings of images,

demonstrating that VGG networks [36] effectively predict human perceptual similarity. The authors pro-

vided evidence that their metric outperforms traditional handcrafted feature extractionmethods. Similarly,

we adopt the Learned Perceptual Image Patch Similarity (LPIPS) metric [35] as an inter-image distance

function, following the approach in [12]. For further details on the implementation of this distance metric,

the reader is referred to the original work.

Manifold Learning Distances

For our experiments, we used UMAP (Uniform Manifold Approximation and Projection) and PHATE

[30] (Potential of Heat-diffusion for Affinity-based Transition Embedding) as geodesic distance functions.

UMAP [31] is a dimensionality reduction technique that preserves both local and global structures by learn-

ing a low-dimensional embedding that respects manifold structure. PHATE, on the other hand, excels at

capturing continuous data trajectories and complex relationships by modeling data with heat diffusion

processes.

One advantage of these geodesic distance functions is that they are quasi-parametric: the distance be-

tween two points is influenced not only by those two points but also by the structure of the entire input

space. This feature allows us to group not just from a single bag, but from multiple bags when calculating

an embedding, resulting in intra-instance distances that respect a manifold learned from a larger number

of points. To calculate the distance matrix for bag 𝐵𝑖 , while factoring in 𝑔 - 1 other bags:

B =
⋃
𝑘∈𝐼 𝑗

B𝑘

where B𝑘 represents the set of input instances for the 𝑘-th bag, 𝐼 𝑗 is a set of indices containing 𝑖 and 𝑔 - 1

other bag indices.

A joint embedding function 𝑓 is applied to all instances in B:

Z = 𝑓 (B) ∈ ℝ𝑁×𝑑

where Z is the lower-dimensional embedding, with 𝑁 as the total number of instances across 𝑔 bags, and

𝑑 the embedding dimension.

The distance matrix 𝐷𝑖 of bag 𝐵𝑖 ,is generated from the embedding 𝑍 as such:

𝐷𝑖 = ∥z𝑚 − z𝑛 ∥2, z𝑚, z𝑛 ∈ Z𝑖

where Z𝑖 ⊂ Z is the subset of the embedding corresponding to the instances in 𝐵𝑖 .

This produces a distance matrix 𝐷𝑖 for each bag individually, capturing the intra-bag distances in the

learned lower-dimensional space.

These methods are also known to be noise-resistant in pairwise distances, providing stable embeddings

even in noisy data environments. Each method has hyperparameters that control aspects such as neigh-

borhood size and diffusion rate, allowing fine-tuning of the embedding’s sensitivity to both local and global

structure.

Due to their computational complexity, we precomputed these geodesic learning distances before the

main training phase. Similar to the topological datasets described in Section 3.3.1, we hash and save these

embeddings for reuse across different runs. For consistency, we applied a constant downprojection dimen-

sion across all embeddings and grouped bags in sets of 10 to optimize pairwise distance calculations. This

preprocessing ensured stable and computationally manageable embeddings throughout our experiments.
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Foundation Model Generated Distance

We implemented a distance function derived from the output of a foundation model called DinoBLOOM

[27]. DinoBLOOM is a self-supervised contrastive model trained exclusively on single-cell hematological

data, using a tailored DINOv2 [37] pipeline. This model was developed using data from 13 hematology

datasets, resulting in embeddings that are well-suited for capturing hematological patterns.

DinoBLOOM is available in four versions of varying model sizes; for computational efficiency, we used

the smallest version in our experiments, which outputs a 384-dimensional feature vector per single-cell

image. By leveraging this model, we obtained distances that not only reflect direct feature differences but

also capture insights from the extensive training data, providing robust representations of hematological

variations.

To calculate the distance between two single-cell images, we perform a forward pass on both images,

then use the resulting vectorized embeddings to define a distance function. In our experiments, we ex-

plored multiple distance metrics, including those described in Sections 3.3.2, 3.3.2, as well as cosine simi-

larity.

𝑑 (image
1
, image

2
) = 𝑓 (embedding

DinoBLOOM
(image

1
), embedding

DinoBLOOM
(image

2
))

Where 𝑓 can be one of the aforementioned distance functions.

Figure 3.7 This is a 2D embedding of Dinobloom-B features of over 80,000 cells. On the image extremities we can

see the cells that belong to certain Leukemia subtypes highlighted. This figure was taken from [3].

Cubical Complex Distance

A cubical complex is a mathematical structure used to analyze shapes and spaces by decomposing them

into connected "cubes" of varying dimensions. For 2D images, this means representing the image as a col-

lection of connected pixels (0-dimensional points), edges (1-dimensional lines between pixels), and squares

(2-dimensional areas formed by pixels). Constructing a cubical complex on an image captures both local

and global spatial patterns, including connectivity and topological features, such as holes and connected

components. This is particularly useful for defining distance functions that take into account the under-

lying topological properties of images, which simpler pixel-wise comparisons might overlook [38].
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Similar to persistent homology, cubical complexes are tracked as a threshold value changes. In this

context, the filtration is defined by setting pixels below the threshold to zero and those above it to one,

which results in a persistence diagram for each degree of topological feature, with features "born" and

"died" at specific brightness thresholds. In our application, we use the GUDHI [39] package to compute

the persistence diagrams.

Figure 3.8 This figure illustrates how the cubical complex features are calculated on an image. The first three

images show the 0
th
, 1

st
, and 2

nd
order topological features. Notice that the 2

nd
order features differ from the 2

nd

order features of triangle-based topology used in regularization. The fourth object represents the image after the
filtration is applied, and the fifth object shows the cubical complexes calculated for this particular threshold.This

image was taken from [38]

Comparing the resultant persistence diagrams to produce a loss or distance between two images, as done

in [40], allows us to calculate the bag distance matrix. Their approach involves using the Earth Mover’s

Distance (EMD) on the cubical complex persistence diagrams of the two images to calculate a loss across

input images. This approach is summarized as follows:

Given a cubical complex 𝐶 derived from an image 𝐼 , the persistence diagram PD(𝐶) is calculated by

tracking homological features across a filtration:

PD(𝐶) = {(𝑏𝑖 , 𝑑𝑖) | 𝑖 ∈ {1, . . . , 𝑛}}

where 𝑏𝑖 and 𝑑𝑖 represent the birth and death times of the 𝑖-th feature in the cubical complex.

For two persistence diagrams PD(𝐶1) and PD(𝐶2), theWasserstein distance𝑊𝑝 (with 𝑝-norm) is defined

as:

𝑊𝑝 (PD(𝐶1), PD(𝐶2)) = ©­« inf

𝛾 :PD(𝐶1 )→PD(𝐶2 )

∑︁
𝑥∈PD(𝐶1 )

∥𝑥 − 𝛾 (𝑥)∥𝑝ª®¬
1

𝑝

where 𝛾 is a bijection between the points in PD(𝐶1) and PD(𝐶2) that minimizes the total 𝑝-th power of

the distances between corresponding points.

The Wasserstein distance was chosen here because we require a distance that compares two distribu-

tions with different number of samples. Thus the Wasserstein distance is used to compare the persistence

diagrams produced by two images.

3.3.3 Topological Loss

This workwas initially inspired by the paper Topological Autoencoders [15] byM.Moor et al. In that work,

an autoencoder is implemented with a special loss function containing both a reconstruction term and a

topological loss term. A novel topological loss function was developed by Moor et al. for this purpose. In

this work, we implement the loss function proposed in [15] and also introduce some new approaches.

Topological Autoencoder Approach

In the approach implemented in [15], the topological regularization proceeds as follows:
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Figure 3.9 In the Topological Autoencoders approach a topological signature is calculated at the autoencoder latent

space and at the input space, this topological signature is encoded as a persistence diagram, this figure was taken

from [15].

1- The 0-order topological features (connectivity) of both input and latent space are calculated, how-

ever, the end result of this calculation is not the persistence diagram, but the persistence edges.

Persistence edges are defined as edges in the point cloud which led to a change in its 0 order topo-

logical features, or in other words caused a 0 order feature to be born or to die. Calculating for and

saving the persistence edges is a way to encode the 0 order topology across scales. It is not difficult

to show that one can deterministically construct the 0 order components at any scale, given the

persistence pair, additionally, one can also show that any point cloud of n points, has exactly n-1

persistence pairs to encode the 0 order topology for all scales.

2- Once the persistence pairs are calculated, we have a compact representation for the 0-order topology

for both spaces, now it is time to calculate a loss. In their work Moor et al. formulated 3 variants of

the same approach, here only the most successful will be discussed. With the persistence edges at

hand, the topological differentiable loss of one space on the other is formulated as such:

Let,

𝐸1
persistent

= {𝑒𝑖 = (𝑣𝑖𝑗 , 𝑣𝑖𝑘 ) | 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗, 𝑗 ≤ 𝑘, 𝑘 ≤ 𝑛}

Where:

– 𝐸1
persistent

is the ordered set of persistent edges generated by space S1.

– 𝑏 > 𝑎 ⇔ 𝐷1(𝑣𝑎𝑗 , 𝑣𝑎𝑘 ) < 𝐷1(𝑣𝑏𝑗 , 𝑣𝑏𝑘 ) where 𝐷1 is the distance matrix of S1.

– 𝑒𝑖 represents the 𝑖-th persistence edge.

– 𝑣 𝑗 and 𝑣𝑘 are the vertices of the 𝑖-th edge.

– 𝑛 is the total number of vertices.

Then the loss is calculated using the following equation:

𝐿1 on 2

Topo
=

∑︁
𝑒𝑖 in 𝐸1

persistent

(
𝐷1(𝑣𝑖𝑗 , 𝑣𝑖𝑘 ) − 𝐷2(𝑣𝑖𝑗 , 𝑣𝑖𝑘 )

)
2

3- Now we add 𝐿1 on 2

Topo
and 𝐿2 on 1

Topo
to obtain 𝐿total

Topo
with is differentiable with respect to the model param-

eters.
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Our Topological Autoencoder Amendments

In this work, we propose 2 amendments to the Moor et al. differentiable topological loss approaches.

1- The first modification to the approach is to ensure that the topological encoding of both spaces are

scaled to a common standard. In the literature when comparing the persistent homology of spaces

the scale dimension is always scaled so it ranges from 0 to 1. This is intuitively clear, as a cube and

scaled up or down version of it should have the same persistent homology. This fact was overlooked

in the previous loss function, the modification looks as such:

𝐿1 on 2

Topo
=

∑︁
𝑒𝑖 in 𝐸1

persistent

(
𝐷1(𝑣𝑖𝑗 , 𝑣𝑖𝑘 )
max(𝐷1)

−
𝐷2(𝑣𝑖𝑗 , 𝑣𝑖𝑘 )
max(𝐷2)

)
2

Where max(𝐷1) andmax(𝐷2) are non-gradient tracking scalars, representing the highest value pair-
wise distance entry in in space 1 and 2 respectively.

Figure 3.10 Two spaces defined by 2 pointclouds, one is a scaled version of the other, theoretically the topological

loss between them should be 0, but it is not. Both spaces have the same persistence edges, but have different distances

between them. Applying the topological loss defined in [15] would yield a nonzero loss, which is erroneous.

2- The second amendment is that the loss if formulated as such:

𝐿1 on 2

Topo
=

∑︁
𝑒𝑖 in 𝐸1

persistent

(
𝐷1(𝑣𝑖𝑗 , 𝑣𝑖𝑘 ) − 𝐷2(ℎS2(𝑣𝑖𝑗 , 𝑣𝑖𝑘 ))

)
2

where ℎS2 is a function that takes as input the indices (𝑣𝑖𝑗 , 𝑣𝑖𝑘 ) and searches space 2 for the shortest

possible edge that places 𝑣𝑖𝑗 and 𝑣
𝑖
𝑘
in the same connected component. The idea behind this, is that

topologically speaking when 2 components are connected it should not matter what edge connected

them, as long as these 2 components are merged at the same scale. The idea is illustrated in the

figure below.
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Figure 3.11 Assuming edge AB in space 1 has the same scale as edge CD in space 2, then there should be no 0 order

topological difference between these 2 spaces, hence it does not matter which edge connected these components.

Instead what matters is at which scale they were connected. In this example ℎS1 (𝐴, 𝐵) = ℎS2 (𝐶, 𝐷), so if these 2

clusters joined at a smaller scale in space 1 than 2, then edge CD in space 2 needs to shrink and not edge AB in space

2. In other words, one should be able to rotate the clusters around their centers without impacting the topological

loss.

For the amended approach, we developed a custom zero-order topological signature calculator. This

modification was crucial for extending the functionality of the existing topological computation tools,

enabling us to handle multi-scale encoding and compute the associated loss more efficiently. Our custom

implementation simplified navigation across varying scales, ensuring that topological information was ac-

curately captured and utilized within our framework. For a detailed understanding of the implementation,

we refer the reader to the code repository. A key feature of our approach is the ability of the topological

encoder to determine which persistent pair connects two queried points. This function is described in the

formulation above as ℎS2.

3.3.4 Topological Loss vs MIL Loss Balancing

In the topologically regularized experiments, we introduce an additional hyperparameter, 𝜆, which controls

the balance between the topological loss and the MIL classification loss. This 𝜆 weighting factor adjusts

the contribution of the topological loss relative to the classification objective. Unlike SGD, where scaling

factors might interact with the learning rate, 𝜆 here only affects the gradient’s composition, as we use the

Adam optimizer for all experiments. Specifically, 𝜆 modulates the portion of the gradient attributed to the

topological loss without impacting the learning rate directly. The loss is formulated as such:

𝐿total = 𝐿MIL + 𝜆 · 𝐿topo

Multiple custom schedulers were implemented to control 𝜆 throughout the training,namely:

• Constant Scheduler has a constant weighting throughout training.

• Exponential Scheduler has an exponentially increasing or decreasing weight w.r.t to the epoch.

• Trigger Scheduler has two weighting values, high and low, it switches between states based on

configurable boolean function that has access to all the training metrics being logged to wandb.

• Match MIL and Topo Loss calculates the weight such that the ratio of the MIL and Topology loss

contributions to the gradient are some configurable value.
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3.3.5 Logged & Tracked Metrics

Weights and Biases was was also used to log the relevant metrics to our experiments. In addition to the

values mentioned in 3.2.9, we monitored the training and validation topological loss.

3.4 Distance Function Evaluation Methods

Different distance functions 3.3.2 are proposed in this work, this section covers the evaluation approaches

and criteria upon which distance functions are rated.

3.4.1 Instance Level Distance Metrics

Several of the proposed distance functions (see Section 3.3.2) are parametric, necessitating lightweight

heuristic evaluations to compare the quality of the different approaches. To facilitate these comparisons,

computationally efficient metrics were developed to guide further, more computationally intensive evalu-

ations.

Instance-level distance metrics are used to evaluate image distance functions based on instance-level

labels. To compute an instance-level metric, a fully labeled image dataset and a distance function are

required. These metrics provide a score that reflects how effectively the distance function distinguishes

data points according to their labels. While these instance-level metrics are well-established in the fields

of data science and machine learning, they have been slightly modified in this work to assess the quality

of the distance function itself, rather than the embedding strategy or approach.

Average and Per Class Inter to Intra Class Distance Ratio: The inter-to-intra class distance ratio is
a simple metric that calculates the expected ratio of the distance between two points within the same class

to the distance between two points from different classes. This metric reflects the global effectiveness of

the distance function by assessing the overall separation between classes. Additionally, it can be evaluated

on a per-class basis to measure how well the distance function distinguishes between points within each

individual class.

𝑅inter-intra(𝑖) =

1

|𝑋𝑖 | ( |𝑋𝑖 |−1)
∑

𝑥,𝑦∈𝑋𝑖
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𝑑 (𝑥,𝑦)

1
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1
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∑
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𝑑 (𝑥,𝑦)
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inter-intra
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∑

𝑥∈𝑋𝑖
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𝑦∈𝑋 𝑗

𝑑 (𝑥,𝑦)

Where d is the distance function and𝑋𝑖 is the set of data points whose labels are i and𝐶 is the class size.

Inter and Intra Class Distance Matrix Average and Standard Deviation: The inter and intra class
distance average and standard deviation matrix is a metric that comes in the form of two square matrices

of size equal to the class count. Each entry in the normalized average matrix represents the average

pairwise distance between samples in each class, similarly the standard deviation matrix represents the

expected variance when comparing images from similar or differing classes. These matrices are a good

way of visualizing the global separability of the data points by the distance function, as well as giving an

indication on the certainty of the separation.

𝐷
avg

intra
(𝑖, 𝑖) = 1

|𝑋𝑖 | ( |𝑋𝑖 | − 1)
∑︁

𝑥,𝑦∈𝑋𝑖
𝑥≠𝑦

𝑑 (𝑥,𝑦) 𝐷std

intra
(𝑖, 𝑖) =

√√√√ 1

|𝑋𝑖 | ( |𝑋𝑖 | − 1)
∑︁

𝑥,𝑦∈𝑋𝑖
𝑥≠𝑦

(
𝑑 (𝑥,𝑦) − 𝐷avg

intra
(𝑖, 𝑖)

)
2

𝐷
avg

inter
(𝑖, 𝑗) = 1

|𝑋𝑖 | |𝑋 𝑗 |
∑︁
𝑥∈𝑋𝑖

∑︁
𝑦∈𝑋 𝑗

𝑑 (𝑥,𝑦) 𝐷std

inter
(𝑖, 𝑗) =

√︄
1

|𝑋𝑖 | |𝑋 𝑗 |
∑︁
𝑥∈𝑋𝑖

∑︁
𝑦∈𝑋 𝑗

(
𝑑 (𝑥,𝑦) − 𝐷avg

inter
(𝑖, 𝑗)

)
2

Where d is the distance function and 𝑋𝑖 is the set of data points whose labels are i.
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Triplet Loss: Triplet loss is a well-known loss function in machine learning. It takes three data points

as input: an anchor, a positive sample, and a negative sample. As the name implies, the positive sample

is in the same class as the anchor, while the negative sample is from a different class. The triplet loss

is evaluated by comparing the distance between the anchor and the positive sample with the distance

between the anchor and the negative sample, as shown in the equation:

L =

𝑁∑︁
𝑖=1

[
𝑑 (𝑥𝑎𝑖 , 𝑥

𝑝

𝑖
) − 𝑑 (𝑥𝑎𝑖 , 𝑥𝑛𝑖 ) + 𝛼

]
+

Where 𝛼 alpha is the margin and the upper indices a, b and n represent the anchor, positive and negative

points respectively and d represents the distance function being tested.

Silhouette Score: The Silhouette score is typically a metric used to measure the quality of clustering

algorithms. It assesses cohesion, which is how similar an object is to its own cluster, and compares it to

separation, which is how similar it is to the nearest cluster different from its own. Typically, the similarity

is calculated based on Euclidean distance, so the metric effectively evaluates the embedding method rather

than the distance function.

In our case, we do it differently: by fixing the embeddings to be the images, we can change the dis-

tance function defining similarity. This way, the Silhouette score reflects the performance of the distance

function instead of the embedding algorithm. The Silhouette score is determined using this equation:

𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

𝑏 (𝑖) − 𝑎(𝑖)
max(𝑎(𝑖), 𝑏 (𝑖))

Where a(i) is the average distance between a point i and all other points in the same class and b(i) is the

average distance between i and all points in the nearest different class.

K-Nearest Neighbors Classification Accuracy, Precision and Recall: K-Nearest Neighbors is a

supervised learning algorithm. Typically, it uses Euclidean distance to find the K nearest points to the

point to be classified, and based on the majority label of the K neighbors, a classification is determined for

the new point. KNN is one of the simplest classification algorithms, relying on one hyperparameter, K, to

create a classifier. In our case, we replace the Euclidean distance with the distance function to be tested, so

that the accuracy, precision, and recall metrics of the classifier reflect the quality of the distance function.

In our experiments we used k=3.

Leave One out cross validation K- Nearest Neighbors Accuracy, Precision and Recall: Leave
one out cross validation of the KNN classifier is a technique where the point to be predicted is left out the

learning process, thus preventing a data leak between testing and training. The result of this is a more

accurate all be it more pessimistic quantification of the quality of the distance function. In our experiments

we used k=3.

3.4.2 Data Preparation and Preprocessing

For the heuristic evaluation of our distance functions, we utilized 5 diverse datasets that cover a broad

range of domains and applications:

• MNIST [13] is a widely recognized dataset of handwritten single digits. It consists of 70,000 anno-

tated grayscale images. The images are 28x28 making MNSIT images relatively small dimensional

objects compared hematological images.

• FashionMNSIT [14] has a similar composition as MNIST, containing also 70,000 images of 28x28

images divided in 10 classes of different clothing articles. While similar in structure to MNIST,

FashionMNIST offers a more complex computer vision task due to the high variability in appearance

of items in the same class, thus requiring better distance functions.

• CIFAR-10 [41] is a image dataset, consisting of 60,000 32x32 RGB images of animals and transporta-

tion vehicles. CIFAR is the most complex of the mentioned datasets, involving very fine differences

between classes that are often hard for even humans to distinguish.
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• ACEVEDO [42] also known as BloodMNIST, is a hematology dataset containing 17,000 labeled sin-

gle blood cell images, taken from only healthy people. The images are 360x363 pixels originally,

however, in practice, we found some images in the dataset that were in fact 360x360, for that rea-

son everything was resized to 360x360. All images in ACEVEDO fall into 8 classes; neutrophils,

eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelo-

cytes, and metamyelocytes), erythroblasts and platelets or thrombocytes.

• AMLCytomorphologyMLLHelmholtz [29] dataset is the dataset used for the training of SCEMILA

3.2.1. Although primarily a MIL dataset with labels provided only at the bag or patient level, we

were able to obtain a fully annotated subset of it (<4%) for evaluating our distance functions using

our instance level tests. These instance level labels belong to one of 25 very imbalanced classes,

with "ambiguous" and "other" classes. For clarity and interpretability of the results "ambiguous" and

"other" classes, as well as any class containing less than 30 members were removed, leaving us with

13 final classes.

Figure 3.12 Examples of samples from the datasets used in the experiments, showcasing diverse image data types,

including handwritten digits (MNIST), fashion items (FashionMNIST), natural images (CIFAR10), blood smear cell

images (Acevedo), and cytomorphology of Acute Myeloid Leukemia (AML).

3.4.3 Experiment Configuration Method

Similarly to the machine learning configuration process in 3.2.11, we used a persistent experiment config-

uration approach. From these configuration files one can set:

• Which dataset to use for the experiment

• Sampling strategy to use on the dataset for metric evaluation

• Augmentation strategy settings

• Distance function to use and its associated settings
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3.4.4 Results Logging Method

We used a PDF creation package in Python called ReportLab to visualize these results. This was done to

save the experiment results along with the settings that generated them, as well as visuals and graphs to

aid with visualization and analysis. Additionally, samples of the transformed or augmented images are

visualized in the PDF output.





31

4 Experiments and Results

4.1 Baseline Multiple Instance Learning Model

Asmentioned previously, we are operating in a data scarce setting, where overfitting is a constant problem.

To setup a stable baseline to test our topological regularization approaches, we tested and added many

training methods detailed in 3.2, achieving a 67%±6.6 test accuracy. Detailed here are the experiments

conducted to reach this performance.

4.1.1 Optimizing Regularization Techniques

Since overfitting is a big risk in this problem setting, special attention was paid to the regularization ap-

proaches. The risk of overfitting was apparent throughout the work as exemplified by the following ex-

amples:

(a) Training loss over epochs.

(b) Validation loss over epochs.

Figure 4.1 This figure shows the generalization problems of our baseline model in this problem setting. This illus-

trates the generalization problem, where we find that the training and validation losses are not well coupled together.

The differently colored curves are runs on the same splits of the data but with different regularization settings. The

red and purple curves have unstable generalization, while grey and green have stable but bad generalization.
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The figure above 4.1 shows 4 runs with different regularization settings, each having generalization

problems. Their respective training loss converges to near 0, while their validation losses are either un-

stable or inadequately converging. We observed that the model is always able to fit the data, even under

extreme regularization, which is explained by data scarcity, meaning our model can always memorize the

data because it is too little. This pose a difficulty, as we were not able to clearly identify helpful regulariza-

tion techniques, as usually the training curve’s convergence is very helpful in diagnosing over and under

fitting.

The negative effects of bad visualization are also perceivable on the encoder output level. Improper

regularization cause then encoder to lose it’s differentiation capabilities, causing different cell classes to

collapse on each other as seen in the figure below.

(a) Good Regularization including data aug-

mentation, dropout, L2 and batching

(b) Bad Regularization including only

drouput and L2

(c) Single Cell Labels

Figure 4.2 This figure illustrates how the encoder loses its expressiveness when trained under bad regularization.

In order to find adequate regularization settings, we set up a sweep optimizing over 6 regularization tech-

niques namely, L2 weight decay, dropout, image augmentation, model parameter reduction, label smooth-

ing and gradient accumulation. The sweeper was configured to optimize the expected value of the test

accuracy, using a Bayesian optimization method. Please find the sweep configuration file, detailing the

parameter ranges and sweep strategy here.

Figure 4.3 Accuracy of different runs with different regularization settings. The search for hyperparameters here is

guided by Bayesian Optimization. The best of these was picked and its hyper parameters were tuned further.
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The results for our optimal regularization settings showed, that model regularization (i.e. L2, dropout

andmodel reduction) is not as effective as data regularization (i.e. data augmentation and label smoothing),

as increasing the model regularization simply caused the validation loss to converge at higher values while

the training remained unaffected. On the other hand regularizing the model via the data showed big

generalization improvements. The final regularization settings can be found in this configuration file.

After fixing the regularization hyper parameters settings, another sweep was run over the learning

rate scheduler only, controlling such parameters, like patience, LR drop factor and initial learning rate

of the "ReduceLRonPlateaux". This step showed very marginal improvement, as the results showed that

the performance was stable for a large range of the LR hyperparameter settings. The final learning rate

settings can be found in this configuration file.

Finally a sweep was run over such settings that control computation time and speed. This included

such settings as float precision, max epoch and early stopping. While early stopping is considered a reg-

ularization method, we observed that our model results were not affected with early stopping (within a

reasonable range).

metric Split 1 Split 2 Split 3 Split 4 All Splits

accuracy 0.729 ± 0.042 0.627 ± 0.055 0.659 ± 0.074 0.655 ± 0.042 0.668 ± 0.067

auroc 0.923 ± 0.016 0.857 ± 0.017 0.871 ± 0.046 0.897 ± 0.018 0.887 ± 0.037

f1 macro 0.701 ± 0.044 0.588 ± 0.056 0.624 ± 0.077 0.619 ± 0.041 0.633 ± 0.070

precision macro 0.715 ± 0.043 0.611 ± 0.051 0.658 ± 0.060 0.657 ± 0.047 0.660 ± 0.063

recall macro 0.710 ± 0.043 0.595 ± 0.055 0.634 ± 0.071 0.629 ± 0.040 0.642 ± 0.068

Table 4.1 This table shows the average performance of our baseline on a per split level and on the whole experiment

level.

Performing ANOVA analysis on the results of the different splits from table 4.1, we could not reject the
hypothesis that the generating averages of each split are the same. This means that there is a statistically

significant dependence of the results on the split, demonstrating a strong dependence on the input data,

which is consistent with data scarce applications.

Examining the training, validation, and testing confusion matrices, we observe that our encoder per-

forms well in answering the question: "Does this patient have leukemia?" However, accurately identifying

specific subtypes remains a significant challenge.

(a) Validation confusion matrix of the baseline. (b) Testing confusion matrix of the baseline.

Figure 4.4 This figure shows the testing and validation confusion matrices of our baseline. The second row and

column in the confusion matrix indicate that there are no false positives or negatives in the binary classification task

(has leukemia or not). However, this is not the case for leukemia subtypes.



4 Experiments and Results

34

This implies our data is sufficient for the binary classification problem of detecting leukemia, however

our model struggles to differentiate subtypes. This is also reflected in the bag latent space visualization.

(a) UMAP downprojection of patient-level latent space. (b) PHATE downprojection of patient-level latent space.

(c) Legend for the latent

space visualizations.

Figure 4.5 This figure shows the 2D downprojections of our test set bag-level latent space embeddings. The UMAP

and PHATE plots (top) highlight that the binary leukemia detection problem is easier for the classifier than the

subtype classification problem. The legend (bottom) provides the label color mapping.

4.2 Distance Function Evaluation

We conducted multiple experiments to evaluate and optimize our different distance functions approaches.

4.2.1 Baseline Experiment

To set a baseline we conducted the following experiment; Across 5 different data sets we sample 100 points

from every class and evaluated a suit of distance functions on themetrics detailed in 3.4.1, over the samples.

The evaluations of three of the most indicative metrics can be seen below.
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Table 4.2 Baseline Intra-to-Inter Class Distance Overall Ratio (↓)

Method SCEMILA ACEVEDO FMNSIT CIFAR MNSIT

Isomap 0.802 0.727 0.580 0.924 0.623

Manhattan 0.910 0.938 0.668 0.967 0.786

PCA 0.814 0.754 0.605 0.953 0.688

PHATE 0.474 0.463 0.346 0.918 0.409
TSNE 0.966 0.982 0.956 0.971 0.984

UMAP 0.601 0.570 0.440 0.919 0.518

cubical_complex_distance 0.935 0.864 0.963 0.971 0.686

euclidean_distance 0.914 0.926 0.744 0.970 0.851

Table 4.2 shows that UMAP and PHATE are best performers across all datasets in the inter to intra

distance metric. This metric is good at measuring the global class distance quality, unlike KNNs it favors a

single cluster per class type, where as KNNs don’t mind it as long as the different clusters are of the same

class. As expected the MNIST and FashionMNIST data sets performed the best due to their simplicity, with

the blood datasets following shortly behind and with CIFAR performing the worst.

Table 4.3 k-NN Accuracy (↑)

Method SCEMILA ACEVEDO FMNSIT CIFAR MNSIT

Isomap 0.58 ± 0.49 0.65 ± 0.48 0.78 ± 0.41 0.46 ± 0.50 0.81 ± 0.39

Manhattan 0.54 ± 0.50 0.63 ± 0.48 0.81 ± 0.39 0.53 ± 0.50 0.82 ± 0.38

PCA 0.62 ± 0.49 0.65 ± 0.48 0.78 ± 0.41 0.47 ± 0.50 0.88 ± 0.33
PHATE 0.62 ± 0.49 0.56 ± 0.50 0.72 ± 0.45 0.47 ± 0.50 0.72 ± 0.45

TSNE 0.65 ± 0.48 0.43 ± 0.49 0.66 ± 0.47 0.45 ± 0.50 0.66 ± 0.47

UMAP 0.59 ± 0.49 0.64 ± 0.48 0.79 ± 0.41 0.41 ± 0.49 0.83 ± 0.38

cubical_complex_distance 0.60 ± 0.49 0.78 ± 0.42 0.46 ± 0.50 0.76 ± 0.43 0.62 ± 0.49

euclidean_distance 0.58 ± 0.49 0.60 ± 0.49 0.83 ± 0.38 0.50 ± 0.50 0.82 ± 0.38

Table 4.3 summarizes the performance of the distance function, using the k-NN classification accuracy.

While it favors some distances like PCA and Cubical Complex over others, no clear winners come out. We

also note that UMAP and Phate, while not the best, are still competitive in performance.

Table 4.4 Baseline Silhouette Score (↑)

Method SCEMILA ACEVEDO FMNSIT CIFAR MNSIT

Isomap -0.066 -0.013 0.1 -0.124 0.117

Manhattan -0.03 -0.006 0.057 -0.095 0.048

PCA -0.06 0.01 0.105 -0.122 0.118

PHATE -0.179 -0.175 -0.004 -0.298 -0.048

TSNE -0.133 -0.231 -0.184 -0.22 -0.253

UMAP -0.087 -0.061 0.098 -0.202 0.144
cubical_complex_distance -0.068 -0.023 -0.175 -0.138 -0.179

euclidean_distance -0.025 0 -0.175 -0.093 0.048

In the table above 4.4 we see the silhouette scores, where the linear decomposition method PCA is best

performing across the 5 datasets. From these base experiments we deduce that UMAP and PHATE are the

best performing when consider the over performance over all the metrics. Additionally we consider the

euclidean distance and PCA as overall good performers for this non-augmented experiment.
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4.2.2 Augmentation Sensitivity Experiment

As way to test the distance function robustness to perturbations, we ran experiments comparing per-

formances of augmented vs non-augmented datasets. As a first experiment we wanted to quantify the

euclidean distance’s robustness to augmentation, as that is the distance function used in [15] and its sup-

plementary work [12], on which this work builds on. As detailed in the baseline experiments we ran the

same experiment setup on twin datasets, one augmented the other not. All datasets have been augmented

in a tailored manner as to preserve image meaning and integrity as shown bellow.

(a) FashionMNIST without augmentation.

(b) FashionMNIST with augmentation.

Figure 4.6 Comparison of FashionMNIST images with and without augmentation. The first row represents original

images, followed by their augmented versions.

(a) ACEVEDO without augmentation.

(b) ACEVEDO with augmentation.

Figure 4.7 Comparison of ACEVEDO images with and without augmentation. The first row represents original

images, followed by their augmented versions.
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Dataset
KNN Accuracy

↑
Inter-to-Intra
Distance Ratio↓

w/o
Augmentations

with
Augmentations

w/o
Augmentations

with
Augmentations

MNIST 0.82 0.52 0.851 0.985

FMNSIT 0.83 0.60 0.744 0.927

CIFAR 0.50 0.41 0.970 0.995

ACEVEDO 0.60 0.537 0.926 0.966

SCEMILA 0.58 0.42 0.914 0.978

Table 4.5 Comparison of metrics with and without augmentations across datasets.

In table 4.5, we observe that the Euclidean distance evaluated using two metrics across the five datasets

shows a clear deterioration in quality upon augmentation. However, we note that the Euclidean distance

retains some descriptive capabilities, implying that a certain level of generalization is still possible with

this distance function. Additionally, we see a strong drop in performance for MNIST and FMNIST, which

consist of very centered and similarly oriented images, while more diverse datasets do not suffer as much

from this degradation.

To further investigate the sensitivity of our distance functions, we devised an experiment in which

we decompose the augmentation process into its constituent components—namely, Gaussian noise and

translational shifting—to examine their individual contributions to the observed performance degrada-

tion.degradation.

Table 4.6 Leave One Out KNN Accuracy (LOOCV) ↑ Across Different Augmentation Types on FashionMNSIT.

Distance Function All Translation
Aug

Rotation
Aug

Gaussian Noise
Aug None

Isomap 0.14 0.25 0.54 0.64 0.62

Manhattan 0.42 0.33 0.52 0.61 0.71

PCA 0.23 0.24 0.42 0.58 0.63

PHATE 0.05 0.22 0.37 0.66 0.60

TSNE 0.28 0.28 0.40 0.66 0.68

UMAP 0.22 0.30 0.41 0.68 0.63

Cubical Complex Distance 0.16 0.17 0.19 0.23 0.19

Euclidean Distance 0.29 0.28 0.51 0.60 0.61

We observed in the table above 4.6 and consistently across other datasets and metrics that the ranking

of impact across the studied augmentation is in decreasing order translation, rotation, guassian noise.

The above explains why topological regularization using euclidean distance works well on datasets like

MNIST and FashionMNIST [12], as they have veryminor translational and rotational variation across them,

generally well centered and oriented, however, the same can not be said about datasets like ACEVEDO or

SCEMILA.
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Table 4.7 Leave One Out KNN Accuracy ↑ (LOOCV) on ACEVEDO dataset.

Input Type Distance Function All Translation
Aug

Rotation
Aug

Gaussian Noise
Aug None

dino

Isomap 0.875 0.925 0.887 0.887 0.887

Manhattan 0.812 0.838 0.825 0.700 0.775

PCA 0.863 0.838 0.787 0.800 0.850

PHATE 0.887 0.925 0.838 0.875 0.912

TSNE 0.912 0.900 0.900 0.900 0.938

UMAP 0.887 0.887 0.938 0.912 0.850

Euclidean Distance 0.812 0.887 0.725 0.900 0.825

image

Isomap 0.212 0.237 0.312 0.338 0.400

Manhattan 0.188 0.237 0.362 0.300 0.300

PCA 0.200 0.287 0.362 0.388 0.487

PHATE 0.163 0.212 0.338 0.263 0.350

TSNE 0.225 0.287 0.300 0.375 0.263

UMAP 0.188 0.312 0.388 0.525 0.425

Cubical Complex 0.237 0.650 0.463 0.625 0.562

Euclidean Distance 0.237 0.312 0.388 0.388 0.425

Table 4.8 Leave One Out KNN Accuracy ↑ (LOOCV) on SCEMILA dataset.

Input Type Distance Function All Translation
Aug

Rotation
Aug

Gaussian Noise
Aug None

dino

Isomap 0.52 0.63 0.57 0.52 0.56

Manhattan 0.58 0.51 0.62 0.63 0.56

PCA 0.63 0.50 0.45 0.53 0.51

PHATE 0.54 0.57 0.67 0.62 0.66

TSNE 0.45 0.49 0.43 0.58 0.59

UMAP 0.63 0.61 0.60 0.56 0.48

Euclidean Distance 0.56 0.52 0.57 0.62 0.49

image

Isomap 0.13 0.10 0.19 0.32 0.27

Manhattan 0.17 0.21 0.15 0.25 0.36

PCA 0.13 0.16 0.32 0.18 0.39

PHATE 0.10 0.21 0.36 0.22 0.36

TSNE 0.17 0.16 0.20 0.32 0.19

UMAP 0.15 0.21 0.28 0.30 0.33

Cubical 0.22 0.33 0.27 0.28 0.26

Euclidean Distance 0.13 0.21 0.34 0.26 0.36
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The above tables 4.7 & 4.8 display the leave-one-out cross-validation accuracy of various distance func-

tion approaches applied to the ACEVEDO and SCEMILA datasets under different augmentation settings.

When examining the experiments marked as image, where distances are calculated directly in the im-

age space, we observe that the already poor performance without augmentations deteriorates further to

being uninformative once augmentations are applied. This highlights the need for more robust distance

functions to achieve generalizable topological regularization.

The entries marked as dino correspond to experiments performed on single-cell images after passing

them through the foundation model DinoBloom [27]. Using DinoBloom, we aimed to generate better dis-

tance matrices for topological regularization. The tables confirm that DinoBloom produces good and stable

performance across all augmentation settings. The discrepancy in performance between the SCEMILA and

ACEVEDO datasets is attributed to their inherent differences: SCEMILA’s fully labeled subset is highly im-

balanced, whereas ACEVEDO is well-balanced and designed to be a cell-level labeled dataset. Below, we

observe similar trends in the inter- to intra-class distance ratio metric.

4.2.3 Manifold Learning Distance Functions Experiments

We aimed to further investigate the effectiveness of manifold learning distance functions. First, we tested

how the performance of these functions depends on the number of samples provided. Theoretically, in-

creasing the number of samples should enable better evaluation metrics, as manifold learning methods

can benefit from more data to model the underlying structure accurately.

If significant improvements are observed, this approach could be leveraged to compute bag distance

matrices jointly with other bags, potentially improving the loss generated by these jointly calculated dis-

tances. To test this hypothesis, we conducted experiments where manifold learning methods were applied

to increasingly larger input sizes. As a baseline for comparison, we included Euclidean distance to deter-

mine whether this approach offers any tangible benefits.

Table 4.9 Leave One Out KNN Accuracy ↑ (LOOCV) comparison of SCEMILA and ACEVEDO datasets using dif-

ferent distance functions and input sizes.

Dataset Input Type Distance Function 10 Images 20 Images 50 Images 100 Images

SCEMILA

dino

Isomap 0.45 0.44 0.6 0.6
PCA 0.41 0.54 0.56 0.55

PHATE 0.46 0.51 0.61 0.53

TSNE 0.23 0.53 0.54 0.46

UMAP 0.56 0.51 0.66 0.57

euclidean_distance 0.57 0.57 0.61 0.62

image

Isomap 0.1 0.18 0.09 0.11

PCA 0.12 0.15 0.14 0.17
PHATE 0.22 0.1 0.17 0.17

TSNE 0.12 0.14 0.1 0.17
UMAP 0.14 0.13 0.17 0.18
euclidean_distance 0.13 0.2 0.13 0.19

ACEVEDO

dino

Isomap 0.65 0.775 0.85 0.863
PCA 0.8 0.838 0.762 0.8

PHATE 0.7 0.738 0.838 0.925
TSNE 0.175 0.775 0.688 0.875
UMAP 0.787 0.9 0.912 0.9

euclidean_distance 0.85 0.887 0.787 0.812

image

Isomap 0.175 0.212 0.25 0.212

PCA 0.212 0.287 0.125 0.212

PHATE 0.188 0.113 0.212 0.188

TSNE 0.1 0.175 0.225 0.175

UMAP 0.212 0.163 0.125 0.263
euclidean_distance 0.2 0.338 0.237 0.325
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Table 4.10 Inter-to-Intra Distance Ratio ↓ comparison of SCEMILA and ACEVEDO datasets using different dis-

tance functions and input sizes.

Dataset Input Type Distance Function 10 Images 20 Images 50 Images 100 Images

SCEMILA

dino

Isomap 0.725 0.653 0.595 0.617

PCA 0.781 0.736 0.701 0.746

PHATE 0.380 0.391 0.375 0.393

TSNE 0.985 0.800 0.740 0.753

UMAP 0.559 0.498 0.283 0.322

euclidean_distance 0.931 0.928 0.924 0.921

image

Isomap 0.971 0.942 0.983 0.954

PCA 0.948 0.973 0.945 0.954

PHATE 0.838 0.995 0.957 0.948

TSNE 0.995 0.960 0.941 0.939
UMAP 0.976 0.978 0.979 0.913
euclidean_distance 0.978 0.972 0.985 0.983

ACEVEDO

dino

Isomap 0.610 0.565 0.533 0.471
PCA 0.622 0.593 0.591 0.619

PHATE 0.303 0.212 0.326 0.245
TSNE 1.001 0.772 0.728 0.460
UMAP 0.372 0.211 0.226 0.185
euclidean_distance 0.868 0.850 0.858 0.857

image

Isomap 0.972 1.000 0.931 0.951

PCA 0.970 0.948 0.948 0.941
PHATE 0.982 0.987 0.949 0.979

TSNE 0.997 0.995 0.974 0.967
UMAP 0.987 0.955 0.987 0.968

euclidean_distance 0.966 0.970 0.966 0.968

Studying the results from the tables above 4.9 & 4.10, we observe similar trends across both datasets,

suggesting that the metrics align. When encoding the images using DinoBloom, there is a clear advan-

tage to embedding them jointly in increasingly larger batches. In the table, the bold values represent the

best-performing results for a particular distance function approach, while the underlined metric indicates

the top metric for each dataset and input type. While we observed improvements when applying these

manifold methods to larger portions of small datasets, such as MNIST and FashionMNIST, we did not see

significant gains for high-resolution blood cell datasets. The conclusion drawn from these results is that

manifold learning on DinoBloom embeddings can provide notable benefits. This approach could be par-

ticularly useful in small-bag-size applications where topological regularization is desired. In such cases,

other bags can be leveraged to construct reliable bag distance matrices, enabling more effective topological

regularization.

4.2.4 Cubical Complex Approach Optimization

As detailed in 3.3.2, we employed the cubical complex loss as implemented in [40] as an inter-image dis-

tance. However, since the cubical complex implementation in that work was intended for 3D structures,

we had to make some modifications to adapt and optimize it. In our case, the input is also 3D, but the

third dimension represents color channels in the case of RGB datasets. This left us with three possible

approaches:

1 Treat Color Channels Separately: This is the most straightforward strategy. The cubical complex

of each channel is calculated for both images, and a loss is calculated across the equivalent channels

in the input images using the cubical complex distance function. This approach is the most com-

putationally demanding among the proposed methods, as it requires six cubical complex signature

calculations and three Earth Mover’s Distance (EMD) calculations, one for each channel.
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2 Join Channels’ Output, Treating Them as One: In this approach, we also calculate the cubical

complex signature of each channel separately (implying six cubical complex calculations). However,

instead of calculating the loss for each channel individually, we combine all the cubical complex

birth-death features into a single persistence diagram and calculate the Earth Mover’s Distance as if

the features of all three channels (red, green, and blue) existed on one channel.

3 Transform the Image to Grayscale Before Calculating Loss: The simplest approach involves

transforming the image to grayscale, reducing it to a single-channel input, and then calculating the

cubical complex distance as we normally would. This involves converting both images to grayscale,

computing their cubical complex signatures, and calculating the Wasserstein Distance between

them. This is the computationally lightest method, requiring a grayscale conversion, two cubical

complex signature calculations, and a single Wasserstein Distance calculation.

To measure the effectiveness of these approaches, we set up experiments on the CIFAR and ACEVEDO

datasets. Using the same data sample, we calculated the cubical complex distance three times, once with

each approach. The results are presented in the table below.

Table 4.11 Comparison of intra-to-inter-class distance ratio and LOOCV KNN accuracy for CIFAR10with different

cubical complex calculation methods.

Augmentation Distance Function Intra-to-Inter Distance Ratio LOOCV KNN Accuracy

all

euclidean_distance 0.985 0.14

grayscale_cub_complex 0.975 0.11

merged_pd_channels_cub_complex 0.980 0.12
normal_cub_complex 0.980 0.12

none

euclidean_distance 0.937 0.18

grayscale_cub_complex 0.962 0.15
merged_pd_channels_cub_complex 0.945 0.15
normal_cub_complex 0.949 0.13

Table 4.12 Comparison of intra-to-inter-class distance ratio and LOOCV KNN accuracy for ACEVEDO with differ-

ent cubical complex calculation methods.

Augmentation Distance Function Intra-to-Inter Distance Ratio LOOCV KNN Accuracy

all

euclidean_distance 0.978 0.237

grayscale_cub_complex 0.954 0.287
merged_pd_channels_cub_complex 0.962 0.200

normal_cub_complex 0.969 0.237

none

euclidean_distance 0.924 0.425

grayscale_cub_complex 0.834 0.562
merged_pd_channels_cub_complex 0.850 0.562
normal_cub_complex 0.843 0.562

From the tables 4.11 and 4.12, we observe that the cubical complex distance demonstrates consistent

performance across different approaches. Consequently, we adopt the grayscale cubical complex approach,

as it is computationally the lightest and yields the best performance based on our experiments.

4.3 Topologically Regularized Model

In this section, we present results from the topologically regularized multiple instance learning leukemia

subtype detection model described in 3.3.
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4.3.1 Baseline Experiment

As a baseline, we set up an experiment that inherited all hyperparameter configurations from the estab-

lished baseline described in 3.2. To this, we added a constant topological loss weighting factor such that

the average topological loss accounted for approximately 10% of the classification loss. Below, we provide

various results related to these experiments.

Table 4.13 Metrics comparison of topological regularization with different distance functions

Run Type Accuracy Recall Macro Precision Macro F1 Macro AUROC
Original approach UMAP Grayscale 0.37 ± 0.10 0.34 ± 0.07 0.22 ± 0.10 0.24 ± 0.08 0.73 ± 0.04

Original approach UMAP Dino 0.43 ± 0.05 0.39 ± 0.04 0.27 ± 0.07 0.29 ± 0.04 0.74 ± 0.02

Original approach Eucl Grayscale 0.47 ± 0.05 0.43 ± 0.05 0.35 ± 0.08 0.36 ± 0.05 0.74 ± 0.02

Original approach Eucl Dino 0.47 ± 0.02 0.44 ± 0.03 0.37 ± 0.08 0.37 ± 0.06 0.74 ± 0.02

Amended approach Eucl Grayscale 0.43 ± 0.03 0.40 ± 0.03 0.29 ± 0.05 0.31 ± 0.04 0.74 ± 0.03

Amended approach Eucl Dino 0.46 ± 0.04 0.43 ± 0.05 0.34 ± 0.07 0.34 ± 0.04 0.73 ± 0.02

baseline 0.67 ± 0.07 0.64 ± 0.07 0.66 ± 0.06 0.63 ± 0.07 0.89 ± 0.04

The metrics above are collected from three k=4 cross-fold validation runs, except for the baseline, which
was run five times. The results include both Euclidean and UMAP distance functions applied to Dinobloom

and the image space. Additionally, we present results for the original algorithm proposed by Moor et al.

(3.3.3) and for the amended approach detailed in this work (3.3.3). The results clearly favor the baseline

approach without topological regularization, with the best-performing regularized approach scoring 20

points below the baseline’s accuracy. Furthermore, no significant performance differences between the

distance functions are observed. Using ANOVA, we could not reject the null hypothesis that the same

Gaussian distribution generates the accuracies of the different distance function approaches. This suggests

no significant performance variation among the approaches. Below, we provide examples of learning

curves from some of the runs that contributed to the results shown in the table above.
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(a) Training topological loss of some of the runs from Table 4.13.

(b) Validation topological loss of some of the runs from Table 4.13.

Figure 4.8 Learning curves showing training and validation loss from some of the runs in Table 4.13. The top figure

corresponds to training topological loss, and the bottom figure corresponds to validation topological loss.

From the training curves above 4.8, we can see that while the validation loss is higher than the training

loss, the curves still mirror each other in shape, implying some generalization of the topological signature

to the rest of the dataset. However, when comparing the classification validation loss with the baseline, it

becomes clear that topological regularization is negatively affecting the generalizability of the classifica-

tion performance. To address this issue while keeping the topological weighting constant, we attempted

sweeping over reasonable hyperparameter ranges but found no success. Based on our observations, the

topological loss was primarily detrimental to the model’s performance, particularly its generalization ca-

pabilities. This was evident as the topological loss only impacted the training loss of our model under very

extreme hyperparameter configurations. Below, we include the validation classification loss for both the

baseline and the topologically regularized approaches.
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Figure 4.9 The figure above shows the baseline model (red curve), from which all topologically regularized ap-

proaches inherit their hyperparameters. The baseline achieves an acceptable convergence of validation loss. In

contrast, the validation loss of the topologically regularized approaches converges to a value higher than that of the

untrained network, indicating significant generalization challenges.

Further detailed investigation of the results, particularly the confusion matrices, show that the topo-

logically regularized model retains the baseline’s basic leukemia detection capabilities, however loses its

leukemia subtype differentiation power, as seen bellow.

(a) Original approach with Euclidean DinoBloom dis-

tance.

(b) Baseline model.

(c) Amended approach with Euclidean DinoBloom dis-

tance.

Figure 4.10 Confusion matrices for the baseline model (center) and comparison models (left and right). The baseline

serves as a reference for evaluating the two topological regularization approaches. One can see that in all matrices

the binary classification problem of leukemia detection is perfectly solved by all models, since the 2nd row and

column contain only entries in the [2,2] index for all matrices. The labels are, top to bottom, left to right; RUNX1,
control, NPM1, PML_PARA and CBFB.

Despite the difficulty in generalizing, the approach is not without its successes. Observing the 2D em-

beddings of the single-cell space, we can see clear and distinct differences between the baseline, the topo-

logically regularized model, and the various topological regularization approaches. Below 4.11, we include

single-cell latent space visualizations of some of the distance functions alongside the baseline for compar-

ison.
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Original approach using

Euclidean distance on Di-

nobloom latent space.

Original approach using

Euclidean distance on

Grayscale image space. Non-Topologically Regularized Baseline.

Modified approach using

Euclidean distance on Di-

nobloom latent space.

Modified approach using

Euclidean distance on

Grayscale image space.

Figure 4.11Visualization of 2D Latent Space Embedding. The baseline is shown larger in the center, with alternative

approaches stacked vertically on both sides.

4.3.2 Topological Regularization Loss Weighting Experiments

After obtaining the results of the baseline, we aimed to study the impact of the loss weighting factor in

improving the results. To that end, we set up a series of experiments where we gradually varied the weight

of topological regularization, or its contribution to the gradient updates, and observed the performance as

we progressed. As we conducted our experiments, we noticed that performance degraded as we increased

the effect of topological regularization and improved as we decreased it. Consequently, we continued to

reduce the topological regularization until we obtained these results.

Method Accuracy Recall (macro) Precision (macro) F1 (macro) AUROC
Image Input Experiment 0.66 ± 0.07 0.63 ± 0.07 0.65 ± 0.06 0.62 ± 0.07 0.87 ± 0.04

Topo Modified App UMAP Dino 0.57 ± 0.09 0.54 ± 0.09 0.57 ± 0.10 0.53 ± 0.10 0.85 ± 0.06

Topo Modified App Eucl Dino 0.63 ± 0.09 0.60 ± 0.09 0.62 ± 0.10 0.59 ± 0.10 0.85 ± 0.06

Topo Modified Eucl Gray 0.59 ± 0.08 0.56 ± 0.09 0.60 ± 0.11 0.55 ± 0.10 0.84 ± 0.05

Topo Modified Gray Image 0.64 ± 0.12 0.60 ± 0.13 0.61 ± 0.14 0.58 ± 0.14 0.87 ± 0.05

Table 4.14 Comparison of metrics across different experimental setups, but with low topological regularization

weighting. Each value is represented as mean ± standard deviation.

The table above shows competitive results with the baseline, with one of the approaches outperforming

the benchmark in the AUROC metric. However, as with the previous test set performance table, when

performing ANOVA analysis on the accuracy metric of the above methods, one cannot dismiss the null

hypothesis, which states that all approaches are generated by the same Gaussian distribution. From this,

we deduce that we have reached a point in topological weighting where the topological loss no longer

impacts training.
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Examining the training and validation loss curves and confusion matrices, we observe that all these

approaches deviate from each other in minor ways. If one inspects the single-cell latent spaces of these

approaches, they also appear very similar and are not strongly differentiated, as shown in 4.11. This

negative result is not proof of the approach’s ineffectiveness, as this failure can likely be attributed to

other factors that may be hindering the topological regularization.

4.3.3 Direct Dinobloom Experiments

After obtaining negative or non-positive results when regularizing with Dinobloom, we set out to test

Dinobloom’s effectiveness on this problem. To evaluate Dinobloom, we replaced our instance encoder

(ResNet18) with the pretrained Dinobloom model while keeping all other hyperparameters and experi-

mental parameters the same as the baseline. The test set result metrics can be seen below.

Method Accuracy Recall (macro) Precision (macro) F1 (macro) AUROC
Image Input Experiment 0.66 ± 0.07 0.63 ± 0.07 0.65 ± 0.06 0.62 ± 0.07 0.87 ± 0.04

Dinobloom Input Experiment 0.83 ± 0.04 0.80 ± 0.04 0.83 ± 0.05 0.79 ± 0.05 0.97 ± 0.01

Table 4.15 Comparison of metrics across the baseline and the Dinobloom encoder model. Each value is represented

as mean ± standard deviation.

We can see from the table above 4.15 that the Dinobloommodel is indeed a robust and expressive single-

cell feature extractor, providing better accuracy and performance stability than the baseline. Examining

the latent space representation of Dinobloom 4.12 with respect to the fully labeled subset, we also observe

significant positive patterns.

Figure 4.12 This figure shows 2 dimensional embedding of the Dinobloom small single cell encoder.

These results indicate that Dinobloom is a strong foundation model for the leukemia subtype detection

problem, and our inability to improve on the baseline with topological regularization based on Dinobloom

is not due to the inexpressiveness of our distance function. This leads us to believe that further investiga-

tions and adjustments to the topological regularization technique itself are needed to effectively leverage

and match the topological signatures of the two spaces.
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5 Conclusion

In this thesis, our contributions can be summarized into three key points:

1. We introduced metrics to quantify the quality of a distance function in image spaces and demon-

strated their effectiveness.

2. We proposed a collection of distance functions better suited for single cell image spaces and quan-

tified their quality using these metrics.

3. We developed a novel topological loss function, inspired by [15], to enhance computational efficiency

and model performance.

The metrics introduced in the first contribution were applied to evaluate the proposed distance func-

tions. Our results consistently highlighted the superiority of certain distances over others across different

datasets and conditions. This indicates that there is room for improvement in topological regularization

through better-designed distance functions tailored to metric spaces. As expected, we observed that lever-

aging foundation models significantly enhanced the quality and resilience of distance functions, partic-

ularly against augmentations. Additionally, manifold learning methods showed promise, suggesting the

potential for creating more noise-resilient distance functions.

However, when testing the impact of these distance functions on the performance of topological regu-

larization, we could not achieve statistically significant improvements. Regardless of the distance function

employed, leukemia classification accuracy remained unaffected to a degree that could decisively prove

the advantage of one distance function over another. Furthermore, none of the topological regularization

approaches outperformed the baseline, which consistently delivered the best results—except in scenarios

where Dinobloom was used directly as an encoder.

We believe a significant limitation in evaluating the efficacy of topological regularization in this context

is data scarcity. The current training setup on AML data presents an ambiguous scenario where too many

unknowns impede clear analysis and diagnosis of the observed training outcomes. To fully explore the

potential of topological regularization as a method to combat data scarcity, future research should focus

on artificially data-scarce scenarios. This controlled setting could allow for systematic development and

testing, helping isolate the variables and better understand the true capabilities of topological regulariza-

tion.

Additionally, another major limitation of the topological regularization research in this context is MIL.

For future research, a classical model should be considered instead of a multiple instance learning model,

where the topological loss is applied on a batch instead of a bag. This helps in limiting the sources of

variance and uncertainty when developing and improve the topological regularization technique. We also

propose that topological regularization be studied as a dimensionality reduction tool like PHATE and

UMAP before it’s effect on training models is explored. This is because we believe that even the amended

version of the topological loss proposed in [15], the loss can still be improved to be more informative.

Quick tests conducted by us using topological regularization loss as a guide to downproject embedding

show that the current form of the loss is not very expressive, being easily surpassed by the likes of PHATE.

By implementing it as dimensionality reduction tool we can quickly iterate on it improving and debugging

implementation errors.

We would like to conclude that our findings indicate a strong effect of the metric space’s distance func-

tion on the quality of the topological encoding and regularization. We proposed distance functions, metrics

to judge them and topological loss to enforce them however our results have come out amixture of positive,

negative and inconclusive. The results are negative in the sense that no improvements were found, they
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were positive in the sense that potentially promising observations were made relating the distance func-

tions and performance and finally inconclusive since the reason for the lack of observable improvements

is still not found.
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