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WEIGHTED EULER CHARACTERISTIC TRANSFORM BASED

TOPOLOGICAL LOSS FOR RECONSTRUCTING 3D IMAGES FROM

SINGLE 2D SLICES

Abstract

The computer vision task of reconstructing 3D images, i.e., shapes, from their single

2D image slices is extremely challenging, especially in the regime of limited data. Deep

learning models typically optimize geometric loss functions, which may lead to poor

reconstructions as they ignore the structural properties of the shape. To tackle this, we

propose a novel topological loss function based on the Weighted Euler Characteristic

Transform which is both computationally efficient and expressive. This loss acts as

an additional inductive bias to aid the optimization of any neural network toward better

reconstructions in the regime of limited data. We show the effectiveness of the proposed

loss function by incorporating it into SHAPR, a state-of-the-art shape reconstruction

model, and test it on a benchmark dataset, viz., Red Blood Cells dataset. We also

discuss injectivity results and prove the stability of the Euler Characteristic Transform.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Our brains possess the amazing ability to be able to reconstruct 3D shapes from sin-

gle 2D images by leveraging prior knowledge and inductive biases about the shapes and

sizes of objects based on the information captured from previously observed objects [3].

However, for a computer this inverse problem is ill-posed and extremely challenging.

This is because for a single 2D image the space of possible 3D reconstructions is very

large and often ambiguous.

There have been prior deep learning-based attempts to solve this challenge, but most

of them rely on large datasets and/or 3D models of the shape [4–6]. The biomedical

setting in which we consider this problem, unfortunately, does not provide large labeled

datasets and it is too expensive to construct them. The sizes of the datasets available in

the biomedical domain are orders of magnitude smaller than the ones available in other

domains. To this end, we focus on improving reconstruction performance not by using

3D models or large datasets but instead by adding additional inductive biases in the form

of a topology-based regularization to the optimization process. Most models typically

optimize geometry-based loss functions that work on a per-pixel basis, such as the DICE

loss. We improve the performance of an existing neural network by adding a novel
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complementary topology-based loss that considers more global topological features,

such as connectivity, tunnels, or voids. Specifically, we design a novel regularization

term based on the Weighted Euler Characteristic Transform [7], that is computationally

efficient, can work with any image size and can be plugged into any neural network.

An overview of how our loss function can be used can be seen in Figure FC3.1. We

demonstrate the efficacy of the proposed loss function by plugging it into the SHAPR

model and testing it on two bio-medical datasets used in the prior work [8, 9]. In the

current paper, our key contributions are as follows:

• We adapt the Weighted Euler Characteristic Transform (ECT), obtaining a novel

topological loss function for 3D shape reconstruction that is compatible with any

neural network architecture.

• We discuss injectivity results of the ECT and WECT as well as prove stability

results of ECT and WECT on binary images.

• We show the effectiveness of the proposed method by training the SHAPR model

[8] with our proposed loss on the RBC dataset.

Outline. In Chapter 2 we go over the literature relevant to our work as well as the

mathematical background required to understand our topological loss. Subsequently,

in Chapter 3 we describe our proposed loss functions in detail as well as how they fit

into the overall training of a neural network. In Chapter 4 we then prove and discuss

favourable mathematical properties of the WECT. Finally in Chapter 5 we then demon-

strate the efficacy of our model and discuss the significance of our results. Finally in

Chapter 6 we summarize our work and list some potential future work.
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CHAPTER 2

BACKGROUND

2.1 Prior Work

Multiple variants of the problem of 2D to 3D image reconstruction have been studied

by various communities for different applications like scene understanding, medical,

robot navigation, etc. [3]. The tasks considered differ in their input type, some variants

consider multiple slices as the input while some consider a single image like in our

formulation. Among the models that only take a single image as an input, most of them

require a synthetic 3D model of the output or very large datasets [4–6].

The application of computational topology to machine learning is an emerging field

that has shown promise in various applications [10]. It has recently been used exten-

sively in computer vision tasks like segmentation, image generation, etc. [11–13]. In

the current paper, we improve the performance of image reconstruction models using

tools from topology, namely, the Euler Characteristic Transform [7].

SHAPR [8] is the first machine learning model that considers the problem of 2D

to 3D reconstruction in the case of biomedical images. This model proved to be sig-

nificantly better than standard synthetic models like a cylindrical fit and ellipsoid fit.

They also showed that features extracted from the 3D reconstruction helped to improve

accuracy in downstream classification tasks on the 2D images. Recently, a diffusion-
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based model DISPR [14] has been introduced that outperforms the GAN-based SHAPR

model.

Waibel et al. [9] extend the SHAPR model by training the model on a combined

loss function of both the DICE loss as well as a regularization term defined by the

Wasserstein distance between the persistence diagrams—topological descriptors—of

the predicted shape and the ground truth. This model outperforms the SHAPR model

and provides much better reconstructions than the vanilla SHAPR model. However, it

has been shown by Oner et al. [12] that such persistence diagram based loss functions

are not optimal for the following reasons:

• Since the ground truth images are binary images, calculating the persistence dia-

grams over the filtration of pixel values degenerates to calculating the Betti num-

bers, which is a topological measure of limited expressivity.

• Persistence diagrams throw away location information and are generally not in-

jective mappings, thus potentially leading to erroneous matchings, which in turn

may lead to wrong reconstructions.

To overcome these drawbacks, we develop a novel topological loss based on the WECT.

2.2 Mathematical Background

In this section, we briefly introduce the mathematical background required for our

work, for a more detailed explanation we refer the reader to Edelsbrunner et al. and

Turner et al. [7, 15].
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2.2.1 Simplicial and Cubical Complex

A simplicial complex is the fundamental building block of algebraic topology, com-

prised of simplices. A k-simplex σ can be understood as the convex hull of k+1 affinely

independent points. A 0-simplex is a point, a 1-simplex is an edge, a 2-simplex is a tri-

angle and a 3-simplex is a tetrahedron. A face τ of a simplex is the convex hull of a

subset of the k+ 1 points. It is often represented as a face by the notation τ ≼ σ . A

simplicial complex K is a finite collection of simplices satisfying two conditions:

1. σ ∈ K and τ ≼ σ implies that τ ∈ K

2. σ ,σ0 ∈ K implies σ ∩σ0 is either empty or a face of both.

The dimension of the simplicial complex is the dimension of the largest simplex in

the complex, denoted by Dim(K). A subcomplex L is a subset of a simplicial complex

K. Kd is a particular subcomplex that is defined as a subcomplex consisting of all

simplices of dimension d from K, that is, Kd = {σ ∈ K | dim(σ) = d}.

A cubical complex is a special variant of a simplicial complex that is particularly

useful in representing grid-like shapes. It has recently caught traction in applications for

image processing due to the fact that it is better aligned to the grid-like structure of im-

ages [16, 17]. Informally, a cubical complex is identical to a simplicial complex except

that n-simplices are replaced with n-cubes. For example, the triangles (2-simplices) are

replaced by squares (2-cubes), and tetrahedra (3-simplices) by cubes (3-cubes) and so

on. Note that all definitions in this section hold for both simplicial and cubical com-

plexes.

We define a weighted cubical complex to be one with an associated scalar function

f : K −→ R. This weighted cubical complex can be used to compute weighted euler

characteristic and other such invariants defined later in this section.
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(a) (b) (c) (d)

Figure FC2.1: Examples of cubical complex construction from binary images. (b) and (d) are
the cubical complexes corresponding to the binary images (a) and (c), respectively.

Given a d-dimensional image with a scalar function defined on the voxels, we

present two ways to convert it to a weighted cubical complex. The first step common to

both of them is to convert it to a cubical complex is by defining the 0-cubes as the set of

voxels. Then an i-dimensional cube is formed by connecting a set of 2i adjacent vox-

els whose voxel values are positive. Note that two d-dimensional voxels are adjacent if

they share a (d−1)-dimensional face. Thus 1-cubes are the edges corresponding to two

adjacent voxels with values 1. Similarly, the 2-cubes are the squares corresponding to

four adjacent voxels with positive values and so on. Two examples of this construction

can be seen in Figure FC2.1. Now, our scalar function is only defined on the voxels,

there are two ways to extend this to hyper-dimensional cubes:

1. V-Construction: This is a method used commonly in TDA literature, where the

value of higher dimensional cubes is the value of the max of it’s faces.

2. E-Construction: This is a method we propose for our special case where we define

the value of higher dimensional cubes as the product of it’s constituent vertices.

The benefits of which will be discussed at the end of chapter 3.

2.2.2 Sublevel Sets and Filtrations

Consider a simplicial or cubical complex K and a monotonic function f : K → R.

By f being monotonic, we mean f (σ) ≤ f (τ) whenever σ ≼ τ . For such monotonic
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functions, the sublevel set K(a) corresponding to a real value a is defined by

K(a) = f−1(−∞,a],

which is a subcomplex of K. If there are m simplices in K, as we increase a, we get

r+1≤m+1 different subcomplexes which can be arranged in an increasing sequence,

/0 = K0 ⊆ K1 . . .⊆ Kr = K

where Ki = K(ai) and a1 < a2 < .. . < ar are the distinct function values of f at the sim-

plices of the simplicial complex K. This sequence of complexes is called the filtration

of K with respect to f . A common filtration we consider is the height filtration. Given a

height h and a particular direction u⃗, we define the sub-complex K⃗u,h consists of all the

simplices of K whose vertices have height ≤ h along the direction u⃗. We can naturally

define a filtration by increasing the value of h along the direction u⃗.

2.2.3 Euler Characteristic Curve

Given a d-dimensional simplicial complex K, the Euler Characteristic Curve of K

along a direction u⃗ is a function EC⃗u,K : R→ Z defined by

h 7→ χ(K⃗u,h), (Eqn 2.1)

where χ(K⃗u,h) is the Euler characteristic of the simplicial complex K⃗u,h, which is de-

fined as

χ(K⃗u,h) =
d

∑
i=0

(−1)iCard Ki
u⃗,h, (Eqn 2.2)

where Card(Ki
u⃗,h) denotes the number of i-simplices in the subcomplex Ki

u⃗,h. By com-

puting the Euler characteristic alongside a filtration, we obtain the Euler Characteristic

Curve. This construction works for general filtrations and is not restricted to the height
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filtration.

2.2.4 Weighted Euler Curve

Given a d-dimensional simplicial complex K with an associated weight function de-

fined on the vertices w : V −→R, Jiang et al. [18] define the weighted Euler characteristic

of K as:

κ
′(K) =

d

∑
i=0

(−1)i
∑

σ∈Ki

w(σ). (Eqn 2.3)

where V is the set of vertices of K. The value of w for a simplex is the maximum of its

values at the constituent vertices, i.e., for an i-simplex σ = ⟨v0,v1, . . . ,vi⟩,

w(σ) = max{w(v0), . . . ,w(vi)}.

The weighted Euler curve can be defined similarly as the Euler curve, by replacing

the Euler characteristic with the weighted Euler characteristic. Thus, given a simplicial

complex K, the weighted Euler curve of K along the direction u⃗ is a function WECu⃗,K :

R→ R which is defined mathematically as:

h→ κ
′(K⃗u,h).

where κ ′(K) is the weighted Euler characteristic of the simplicial complex K.

2.2.5 Euler Characteristic Transform

The Euler Characteristic Transform (ECT) [7] of a d-dimensional simplicial com-

plex K, denoted by ECTK : Sd−1 −→ ZR, is defined by

v⃗−→ ECv⃗,K, (Eqn 2.4)
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where the direction v⃗ is chosen from the (d−1)-dimensional unit sphere Sd−1. That is,

the ECT is the set of all Euler Characteristic Curves obtained over the height filtrations

along all possible directions.

2.2.6 Weighted Euler Characteristic Transform

The Weighted Euler Characteristic Transform (WECT) [18] of K, denoted by WECTK :

Sd−1 −→ RR, is defined as:

v⃗−→WEC⃗v,K.

Analogous to the ECT, it is the set of Weighted Euler Curves obtained over the height

filtrations of all possible directions chosen from the (d− 1)-dimensional unit sphere

Sd−1. The WECT is the heart of our method. We use it as a topological descriptor to

capture the important topological features of 3D images to define our topological loss

functions.

2.2.7 Distance between ECTs

The distance between two ECTs corresponding to two complexes K1 and K2 is de-

fined by

d(ECTK1,ECTK2) =
∫

u⃗∈Sd−1
∥ECu⃗,K1−ECu⃗,K2 ∥

2du, (Eqn 2.5)

where ∥.∥ is the l2-norm. We use this distance to compute the topology based loss

function to train our neural network. In practice, the integration in equation (Eqn 2.5) is

computed using the Monte Carlo method, i.e., we compute the average of the l2-norms

between the Euler curves along a finite number randomly sampled directions from Sd−1.

Analogously we define the distance between two WECTs replacing the above definition

with WEC instead of EC.
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CHAPTER 3

OUR METHOD: WEIGHTED EULER CHARACTERISTIC

TRANSFORM-BASED LOSS

In this chapter, first we describe the overall workflow of our 3D image reconstruction method

and how our loss function fits into a neural network training procedure (subsection 3.1). Sub-

sequently, we give the detailed algorithms to compute the proposed loss functions (subsections

3.2, 3.3, algorithms 1, 2, 3 ).

3.1 Overview

In our method, we develop a loss function based on the WECT to train a neural network

for 3D image reconstruction from a single 2D slice. Figure FC3.1 shows the workflow of our

model, which is explained in the following steps.

1. Given a 2D slice, it is first passed through a neural network that gives an output 3D image

I, where for each voxel x of I, the model assigns the likelihood of x being part of the true

3D image.

2. Given the 3D prediction I and the 3D ground truth Y , we use the DICE loss combined

with a scaled WECT-based loss function, denoted LT L, to optimize the neural network.
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Figure FC3.1: Workflow of our proposed method. [1] Given a 2D image, a neural network
produces a 3D output. The neural network is then trained on the sum of a geometric loss function
like DICE loss or BCE and our proposed topological loss function, the distance between the
WECTs of the images. Neural network image generated from [2].

Mathematically, this can be represented as:

L(I,Y ) = LDICE(I,Y )+λ LT L(I,Y ), (Eqn 3.1)

where λ is the weight parameter for the topological loss term.

This is a similar setup as described by Waibel et al. [9], however, our method differs in the

details of the topology-based loss LT L(I,Y ) and as a result the efficacy of it as well. Next, we

discuss our Algorithm 1 to train a neural network by computing the topological loss terms based

on WECT, in detail.

3.2 WECT Based Training Algorithm

Given a dataset of 2D slices and corresponding 3D images, we first train the SHAPR model

based on the proposed WECT-based loss function.
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Algorithm 1 TRAINSHAPRMODELBASEDONECT
Input: X - 2D image slice,

Y - Corresponding 3D ground-truth image,

t - Number of thresholds,

Θ0 - Initial model parameters

Output: Trained SHAPR Model

1: Θ←−Θ0 % Initialize model parameters

2: for epoch = 1,2, . . . ,N do

3: I←− SHAPR(X , Θ)

4: LTopo←− 0 % Initialize the Topology Loss

5: % Compute WECT-based Topological Loss

6: A←−E-Construction(I)

7: B←−E-Construction(Y )

8: Sample l directions {⃗u1, u⃗2, . . . , u⃗l} from S2

9: WECTA←−ComputeWECT(A, {⃗u1, u⃗2, . . . , u⃗l})

10: WECTB←− ComputeWECT(B, {⃗u1, u⃗2, . . . , u⃗l})

11: LTopo += (WECTA−WECTB)
2

12: % Compute Total Loss

13: L = LDICE +λLTopo

14: % Perform Gradient Update Step to Update the Model Parameters Θ with Learning Rate

α

15: Θ←−Θ−α ∇ΘL

16: end for

For ease of understanding, in Algorithm 1, we demonstrate the training of the SHAPR model

on a single training sample, i.e., using a 2D slice image X and its ground-truth 3D image Y . In

every epoch (or training step), the image X is first passed to the SHAPR model and an output

3D image I is produced by the model (Line 3). Then at each step, we compute the WECT-based
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loss function using Monte Carlo sampling. Towards this we first convert the image to a cubical

complex using either the V or E construction. Next we calculate the corresponding WECTs

from the respective cubical complexes. Finally, the topological loss function is computed using

the average of l2-norms between WECTA and WECTB. A scaled version of this topological loss

(here, λ is the scaling factor) is added with the standard DICE loss to compute the total loss

(Line 18). The model parameters Θ are then updated by optimizing this loss using a gradient

descent method (Line 19).

3.3 WECT Computation

In this sub-section, we explain the details of approximating the WECT for an image A using l

sampled directions {⃗u1, u⃗2, . . . , u⃗l} from S2 whose pseudocode is given in Algorithm 2. Broadly,

we first construct a cubical complex C from the binary image A using the method explained

in Section 2.2.1 (Line 1, Algorithm 2). Then for each sampled direction u⃗i we compute the

Weighted Euler Curve of C along the direction u⃗i (Lines 4-6). The obtained set of l Weighted

Euler Curves is returned as our Weighted Euler Characteristic Transform (Line 7).

Algorithm 2 COMPUTEWECT
Input: A - 3D Binary Image, l sampled directions {⃗u1, u⃗2, . . . , u⃗l} from the unit sphere S2

Output: ECTA

1: C←− CubicalComplex(A)

2: ECTA←− [] % Initialize as an empty array

3: % Compute Weighted Euler curves along the l directions

4: for i = 1,2, . . . , l do

5: ECTA.add(WeightedEulerCurve(C, u⃗i))

6: end for

7: return ECTA
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The Weighted Euler Curve computation of a cubical complex C along a sampled direction u⃗

is described in Algorithm 3. We compute the minimum hmin and maximum hmax of all heights

of the vertices v0, v1, . . . ,vn in the cubical complex C along the direction u⃗ (Lines 1-2). For a

chosen parameter M, we sample the height field at M+1 equally spaced heights of step-size dh

(Line 5). For each sampled height, we calculate the Weighted Euler Characteristic κ ′ of the sub-

complex Cu⃗,h (Lines 7-10). We return the list of obtained values as our discrete representation

of the Weighted Euler curve. Note that the smaller the step size dh, the closer our representation

is to the continuous Weighted Euler Curve.

Algorithm 3 WEIGHTEDEULERCURVE

Input: C - Cubical complex , u⃗ - Direction vector

Output: ECu,C

1: hmin←min(⃗u ·v0, . . . , u⃗ ·vn)

2: hmax←max(⃗u ·v0, . . . , u⃗ ·vn)

3: WECu,C = [] %Initialize as an empty array

4: h← hmin

5: dh = (hmax−hmin)/M % Step length with parameter M

6: % Compute Weighted Euler curve of M+1 steps

7: while h≤ hmax do

8: WECu,C.add(κ ′(Cu⃗,h))

9: h += dh

10: end while

11: return WECu,C

3.4 Note on V and E-Construction

In our specific case the voxels all have a value between 0 and 1 representing the likelihood

of the voxel. We define the E-construction in the way we do so that the value of a higher
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dimensional cube is equivalent to the likelihood that it exists. This way the Weighted Euler

number that we calcualte is actually the expected Euler number of the complex. So our loss

reduces to minimizing the distance between the expected ECTs of the ground truth and the

prediction.
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CHAPTER 4

THEORETICAL RESULTS

4.1 Theoretical Properties

In this section, we analyze and prove some important properties of the transform and the

proposed loss function to evaluate our method.

4.1.1 Injectivity Property

Turner et al. [7] have shown that ECT over the space of simplicial complexes in R3 is

injective. Subsequently, Curry et al. [19] has shown that picking a finite few careful directions

leads to an injective transform. Jiang et al. [18] show that the WECT is an injective transform.

4.1.2 A Discussion on Stability of ECT-Based Loss

A commonly studied property in computational topology is the stability of a transform, that

is the effect of perturbations on the input to the transformed output [20,21]. We discuss a similar

property for the case of ECT on binary images. We bound the possible change in the ECT of a

binary image by a constant proportional to the size of the image and the size of the change in

the input. We first prove a necessary lemma for our proof in Lemma 1. We then show that the

distance between two EC’s is bounded in Theorems 2 and 3. Subsequently we prove that the
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ECT is bounded in Corrollary 1. We then discuss the effect of thresholding on stability.

Lemma 1. A vertex in a d-dimensional grid is a part of at most 3d cubes of any dimension.

Proof. Consider a vertex v0 =(x1,x2, . . . ,xd) in the interior of the grid. Every k-cube, that has v0

as a vertex, can be uniquely determined by k adjacent vertices of v0 along different dimensions

in the grid. Along the i-th dimension v0 has two adjacent vertices (x1,x2, . . . ,xi± 1, . . . ,xd),

along positive and negative directions.

Now to count the number of k-cubes, that v0 is a part of, we simply count the number of

ways we can choose k possible directions from the total d directions, which is
(d

k

)
. Then for

each of these chosen directions, we can either choose the adjacent vertices along the positive or

negative direction, i.e in 2k ways. So the total number of k-cubes, that v0 is a part of, is 2k
(d

k

)
.

Summing up over all dimensions we get:

d

∑
k=0

(
d
k

)
2k = 3d .

Note that we performed the calculation for an interior vertex. For the vertices on the bound-

ary of the grid, each will be a part of fewer cubes. So we can bound the number of cubes, that a

single vertex is a part of, by 3d . ■

Theorem 2. Let I and I∗ be two d-dimensional binary images with vertex set V s.t. they differ

only at one voxel. Then along an arbitrary direction u⃗,

D(ECu⃗,I,ECu⃗,I∗)≤ 3dn/
√

d

where n = |V | and D(ECu⃗,I,ECu⃗,I∗) is the l2-norm between ECu⃗,I and ECu⃗,I∗ , i.e.

D(ECu⃗,I,ECu⃗,I∗) =

√∫ hmax

hmin

(χ(Cu⃗,h)−χ(C∗u⃗,h))
2dh.

Proof. Let C be the cubical complex with vertices v1, v2, . . . ,vn associated with image I, using
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the construction described in Section 2.2.1. Let h1 ≤ h2 ≤ . . .≤ hn be the ordered list of heights

of the vertices along u⃗. Then

D(ECu⃗,I,ECu⃗,I∗) =

√
n−1

∑
i=1

∫ hi+1

hi

(χ(Cu⃗,h)−χ(C∗u⃗,h))
2dh.

Since EC is a piecewise constant function that changes only at the heights of vertices, we can

rewrite it as,

D(ECu⃗,I,ECu⃗,I∗) =

√
n−1

∑
i=1

(hi+1−hi)(χ(Cu⃗,hi)−χ(C∗u⃗,hi
))2.

Let, e = max{h2−h1, . . . ,hn−hn−1}. Then

D(ECu⃗,I,ECu⃗,I∗)≤
√

e

√
n−1

∑
i=1

(χ(Cu⃗,hi)−χ(C∗u⃗,hi
))2.

Since for x ∈ Rn, ∥x∥2 ≤ ∥x∥1, we have

D(ECu⃗,I,ECu⃗,I∗)≤
√

e
n−1

∑
i=1
|χ(Cu⃗,hi)−χ(C∗u⃗,hi

)|

=
√

e
n−1

∑
i=1

∣∣∣∣∣ d

∑
j=0

(−1) j(Card(C j
u,hi

)−Card(C∗ j
u,hi

))

∣∣∣∣∣
≤
√

e
n−1

∑
i=1

d

∑
j=0

∣∣∣(−1) j(Card(C j
u,hi

)−Card(C∗ j
u,hi

))
∣∣∣

Now for any sub-complex of C, the only cubes that can change are the ones that have v0 as a

constituent vertex. So, using Lemma 1, we can bound the inner summation by 3d . Thus we have

D(ECu⃗,I,ECu⃗,I∗)≤
√

e3dn.

Next, we provide a bound for e to complete our proof. Every vertex v0 = (x1, . . . ,xd) has

at least d adjacent vertices, say {vi : i = 1, . . . ,d} where vi = (x1, . . . ,xi±1, . . .xd). We seek to

find an upper bound of the minimum difference between the heights of the vertex v0 and any of

its adjacent vertices over all possible directions u⃗ = (u1, . . . ,ud) ∈ Sd−1. This can be obtained
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by solving the following optimization problem:

max
u⃗∈Sd−1

min
i∈{1,2,...,d}

(|vi · u⃗−v0 · u⃗|) = max
u⃗∈Sd−1

min
i∈{1,2,...,d}

|ui|

with ∥⃗u∥ = 1. The direction vector u⃗ that maximises this function is the vector with all equal

components, i.e., (1/
√

d, . . . ,1/
√

d). Thus, we obtain an upper bound of e as 1/
√

d. ■

Theorem 3. Let I and I∗ be two d-dimensional binary images with vertex set V which differ at

k voxels v1, . . . ,vk. Then along an arbitrary direction u⃗,

D(ECu⃗,I,ECu⃗,I∗)≤ k3dn/
√

d

where n = |V |.

Proof. From I, we construct a sequence of k images I0, I1, . . . , Ik, defined as follows:

Ii(v) =

 I∗(v), v = vi

Ii−1(v), otherwise

for i = 1,2, . . . ,k and I0 = I. Observe that Ik = I∗ and that Ii and Ii+1 differ by only one voxel for

all i from 0 to k−1. Using the triangle inequality of a metric repeatedly and using Theorem 2,

D(ECu⃗,I,ECu⃗,I∗)≤
k−1

∑
i=0

D(ECu⃗,Ii ,ECu⃗,Ii+1)

≤
k−1

∑
i=0

3dn/
√

d = k3dn/
√

d.

■

Corollary 1. Let I and I∗ be two d-dimensional binary images with vertex set V s.t. they differ

at k voxels v1, . . . ,vk. Then,

D(ECTI,ECTI∗)≤ k3dn/
√

d×Surface area of Sd−1
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where n = |V |.

Proof. From theorem 3, the distance between two ECT s, in Eqn 2.5, can be bounded as

D(ECTI,ECTI∗)≤ k3dn/
√

d×
∫

u⃗∈Sd−1
1du

■
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental Results

We test the efficacy of our topological loss function by adding it to the SHAPR model and

testing it on a biomedical dataset which have been used in the prior work [8, 9].

1. Red Blood Cells(RBC): This is a dataset of 825 3D images obtained from a confocal

microscope [22]. These cells are categorized into 9 designated categories: spherocytes,

stomatocytes, discocytes, echinocytes, keratocytes, knizocytes, acanthocytes, cell clus-

ters, and multilobates. The dimensionality of each image is 64×64×64.

These datasets are publicly available.1 Due to the limited dataset size, we follow the evaluation

procedure of Waibel et al. [9]. That is we perform 5-fold cross-validation partitioning the dataset

into five folds with a train/validation/test split of 60%/20%/20%. We ensure that each image of

a dataset appears in the test split exactly once. We compare three different approaches to deter-

mine the improvements of our proposed loss. Namely, the baseline SHAPR [8], SHAPR with

the Wasserstein-based loss [9], and finally SHAPR with our WECT-based loss using both the V

and E construction. For the baseline SHAPR and the Wasserstein loss based implementation,

we use the code made available by Waibel et al. [9].2

1https://hmgubox2.helmholtz-muenchen.de/index.php/s/YAds7dA2TcxSDtr
2https://github.com/aidos-lab/SHAPR torch
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We follow the same training procedure as in Waibel et al. [9], that is, we train all the variants

of SHAPR for a maximum of 100 epochs, using early stopping with a patience parameter of 15

epochs. We also perform data augmentation before training by performing random horizontal

or vertical flipping as well as 90◦ rotations with a 33% probability for an augmentation to be

applied on a sample. We track our experiments using WANDB [23]. In the testing phase, we

apply Otsu’s thresholding [24] to convert our image into a binary image. This binary image is

then compared with the ground truth to calculate three metrics from the prior works, namely,

IoU error, relative Volume error and relative surface error. We drop the roughness error from

the prior works [8, 9] as we believe it does not serve as a useful metric to measure the accuracy

of the reconstruction. It is defined as the difference between the predicted image and a 3D

smoothened Gaussian version of the image. As seen in Figure FC5.1, even the ground truth is

rough in nature and will have a large roughness error.

We train the baseline and Wasserstein loss based model using the hyperparameters reported

in Waibel et al. [9]. For our WECT-based loss model, we use gradient clipping of threshold value

0.5. The number of directions we consider in evaluating the integral of the distance function is

100 (l in Algorithm 2). Finally, the parameter M or number of steps (Algorithm 3) we take as

30.

Table TC5.1: Performance of different variants of the SHAPR model on the Red blood cells
dataset with the best performing algorithm highlighted in bold.

IoU Error (↓)

Dataset RBC

Baseline 0.539
Wasserstein 0.535
WECT (V) 0.599
WECT (E) 0.546

(a)

Volume Error (↓)

Dataset RBC

Baseline 0.422
Wasserstein 0.511
WECT (V) 0.454
WECT (E) 0.453

(b)

Surface Error (↓)

Dataset RBC

Baseline 0.263
Wasserstein 0.348
WECT (V) 0.278
WECT (E) 0.211

(c)

We can see the results of our experiments in Table TC5.1. We observe that on most metrics

our WECT-based with (E) construction performs competitively or the best. We also note that our

introduction of the (E) construction is crucial as using the (V) construction gives poor results.

We can visualize the outputs of the various methods (Excluding V construction) on the RBC
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dataset in Figures FC5.1, FC5.2. Note that in the current reconstruction problem we cannot

expect perfect reconstructions since the problem is ill-posed.

(a) Ground Truth (b) SHAPR Baseline (c) Wasserstein (d) WECT (E)

Figure FC5.1: Qualitative results on the RBC dataset. The WECT result is significantly better
than the others

(a) Ground Truth (b) SHAPR Baseline (c) Wasserstein (d) WECT (E)

Figure FC5.2: Qualitative results on the RBC dataset. Both the topology losses don’t have
artifacts unlike the SHAPR baseline
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we present a novel WECT-based topological loss function that can be used

to aid the training of neural networks for the challenging task of 3D image reconstruction from

a single image. We not only show empirical improvement but also discuss some important

theoretical properties of our loss and ECT in general. Our WECT-based loss can be used to

describe the topological distance between any two images. Our method could thus potentially

be employed to aid neural networks in any vision task, including image segmentation or 3D

image reconstruction from multiple images. It would be interesting to test this hypothesis and

observe the performance of our method on different tasks. Another natural extension of our

work would be to consider the persistent homology transform (PHT) instead of the ECT. While

both are injective, the persistence diagram is more informative than the Euler Curve however at

the cost of additional computation. It would be interesting to explore whether this provides any

benefit in a practical setting.
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[14] Dominik J. E. Waibel, Ernst Röell, Bastian Rieck, Raja Giryes, and Carsten Marr.

A diffusion model predicts 3d shapes from 2d microscopy images. arXiv preprint

arXiv:2208.14125, 2022. Available at https://doi.org/10.48550/arXiv.2208.14125.

[15] Herbert Edelsbrunner and John L Harer. Computational topology: an introduction. Amer-

ican Mathematical Society, 2022.

[16] Bastian Rieck, Tristan Yates, Christian Bock, Karsten Borgwardt, Guy Wolf, Nicholas

Turk-Browne, and Smita Krishnaswamy. Uncovering the topology of time-varying fMRI

data using cubical persistence. Advances in Neural Information Processing Systems,

33:6900–6912, 2020. Available at 10.5555/3495724.3496303.

[17] Madjid Allili, Konstantin Mischaikow, and Allen Tannenbaum. Cubical homology and

the topological classification of 2d and 3d imagery. In Proceedings 2001 international

conference on image processing (Cat. No. 01CH37205), volume 2, pages 173–176. IEEE,

2001. Available at 10.1109/ICIP.2001.958452.

[18] Qitong Jiang, Sebastian Kurtek, and Tom Needham. The weighted euler curve trans-

form for shape and image analysis. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, pages 844–845, 2020. Available

at 10.1109/CVPRW50498.2020.00430.

[19] Justin Curry, Sayan Mukherjee, and Katharine Turner. How many directions deter-

mine a shape and other sufficiency results for two topological transforms. Transactions

of the American Mathematical Society, Series B, 9(32):1006–1043, 2022. Available at

https://doi.org/10.1090/btran/122.

[20] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence dia-

grams. In Proceedings of the twenty-first annual symposium on Computational geometry,

pages 263–271, 2005. Available at https://doi.org/10.1007/s00454-006-1276-5.



28

[21] Primoz Skraba and Katharine Turner. Wasserstein stability for persis-

tence diagrams. arXiv preprint arXiv:2006.16824, 2020. Available at

https://doi.org/10.48550/arXiv.2006.16824.

[22] Greta Simionato, Konrad Hinkelmann, Revaz Chachanidze, Paola Bianchi, Elisa Fermo,

Richard van Wijk, Marc Leonetti, Christian Wagner, Lars Kaestner, and Stephan

Quint. Red blood cell phenotyping from 3d confocal images using artificial neu-

ral networks. PLoS Computational Biology, 17(5):e1008934, 2021. Available at

https://doi.org/10.1371/journal.pcbi.1008934.

[23] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available

from https://www. wandb.com/.

[24] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE

Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979. Available at doi:

https://doi.org/10.1109/TSMC.1979.4310076.


	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction

	Background
	Prior Work
	Mathematical Background
	Simplicial and Cubical Complex
	Sublevel Sets and Filtrations
	Euler Characteristic Curve
	Weighted Euler Curve
	Euler Characteristic Transform
	Weighted Euler Characteristic Transform
	Distance between ECTs


	Our Method: Weighted Euler Characteristic Transform-based Loss
	Overview
	WECT Based Training Algorithm
	WECT Computation
	Note on V and E-Construction

	Theoretical Results
	Theoretical Properties
	Injectivity Property
	A Discussion on Stability of ECT-Based Loss


	Experimental Results
	Experimental Results

	Conclusion and Future Work
	Bibliography



