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Abstract

Deep generative models such as flow and diffusion models have proven to be effective
in modeling high-dimensional and complex data types such as videos or proteins,
and this has motivated their use in different data modalities, such as neural network
weights. A generative model of neural network weights would be useful for a diverse
set of applications, such as Bayesian deep learning, learned optimization, and transfer
learning. However, the existing work on weight-space generative models often ignores
the symmetries of neural network weights, or only takes into account a subset of them.
Modeling those symmetries, such as permutation symmetries between subsequent lay-
ers in an MLP, the filters in a convolutional network, or scaling symmetries arising with
the use of non-linear activations, holds the potential to make weight-space generative
modeling more efficient by effectively reducing the dimensionality of the problem.

In this light, we aim to design generative models in weight-space that more compre-
hensively respect the symmetries of neural network weights. We build on recent work
on generative modeling with flow matching, and weight-space graph neural networks
to design three different weight-space flows. Each of our flows takes a different ap-
proach to modeling the geometry of neural network weights, and thus allows us to
explore the design space of weight-space flows in a principled way. Our results confirm
that modeling the geometry of neural networks more faithfully leads to more effective
flow models that can generalize to different tasks and architectures, and we show
that while our flows obtain competitive performance with orders of magnitude fewer
parameters than previous work, they can be further improved by scaling them up. We
conclude by listing potential directions for future work on weight-space generative
models.
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1. Introduction

Deep generative models such as diffusion and flow models that have led to significant
developments in image generation (Esser et al., 2024) and biological applications such
as protein structure prediction (Abramson et al., 2024) have also been applied to neural
network weights (Peebles et al., 2022; Schürholt, 2024). However, the existing works do
not take into account the geometry of neural networks arising from permutation and
scaling symmetries, or only consider the permutation symmetries. However, modeling
the symmetries of data often leads to improved performance and more data-efficient
training (Brehmer et al., 2024). We attempt to fill this gap by building flow models
that learn a vector field to transport a prior over neural network to the posterior for
a specific task through the flow matching framework (Lipman, Havasi, et al., 2024),
processing neural network weights with permutation-invariant graph neural networks
(Kofinas et al., 2024; Lim, Maron, et al., 2023) and propose three candidate designs
differing on how they handle the underlying geometry. Figure 1 gives an overview of
our approach, and we summarize the main points in this Introduction.

1.1. Motivation

Weight-Space Generative Models as Learned Optimizers

A generative model of neural network weights is in essence a learned optimizer, and
learned optimizers constitute an active research area in their own right (Hospedales et
al., 2022). However, unlike typical learned optimizers that are often trained by unrolling
the gradient-based optimization of neural networks (Finn et al., 2017), generative
models are trained directly with data (trained neural network weights), using the
outputs of neural network training. This implies weight-space generative models can be
improved by utilizing public datasets of neural network checkpoints such as (Peebles
et al., 2022; Schürholt, Taskiran, et al., 2022).

Inference with weight-space generative models is also fundamentally different than
gradient-based optimization. Rather than predict the task gradients or output optimiza-
tion steps, a generative model can output trained weights in “one-shot.” Furthermore,
they open the way for applications of tools from the modern generative models litera-
ture to navigate the space of neural network weights.

2



1. Introduction

Weight-Space Generative Models as Probabilistic Models

The fundamental units of modern generative models such as diffusion and flow models
are probability distributions, that is they learn to transport one probability distribution
such as a Normal distribution to another one such as the distribution of certain images.
Weight-space generative models therefore also model a complex probability distribution
over neural network weights. They can both efficiently sample from it, and evaluate
the likelihood of arbitrary points under this distribution.

Being able to both sample from and evaluate the likelihood function of a complex
distribution puts generative models in a unique place among similar methods. The
likelihood function of variational approximations of neural network posteriors can also
be evaluated, but they model considerably simpler distributions, while Markov chain
Monte Carlo methods can sample from more complex multi-modal distributions but
do not allow likelihood computations. Nevertheless, this power of generative models
comes with increased computational demands during training and the need for careful
architecture design.

Generative Models, Geometry, and Neural Network Weights

Geometric generative models that model the geometry of their domain by invariance/e-
quivariance constraints (Klein et al., 2023), parametrizing their data points on manifolds
(Chen and Lipman, 2023), or learning a manifold structure from data points alone
(Kapusniak et al., 2024) have been applied to a wide range problems from climate
modeling (Bodnar et al., 2024) to protein design (Bose et al., 2024). By baking in the
correct inductive biases from the start rather than expecting a model to learn them from
scratch or through data augmentation, such geometric models make training more
data-efficient.

It is thus a logical first-step, especially for high-dimensional and multi-modal distribu-
tions such as neural network posteriors, to model the geometric structure of the data as
accurately as possible. In particular for deep neural networks, their non-identifiability -
there being multiple parametrizations of the same function, is a key reason behind this
multi-modality, and it is hypothesized that the modes in a neural network posterior
are actually linearly connected up to function-preserving permutations (Entezari et al.,
2022). Together, these considerations motivate that weight-space learning tasks can be
considerably simplified through appropriate geometric modeling choices.

3



1. Introduction

1.2. Overview

Symmetries of Neural Networks (Chapter 4)

Neural network weights possess various symmetries, i.e. transformations of the network
parameters that leave the function it is computing unchanged, and this topic has been
an active research area since the early days of neural network research (Hecht-Nielsen,
1990). For example in an MLP, permuting the neurons in one layer together with the
outgoing weights preserves the function, as does similarly permuting the channels in a
convolutional neural network. Non-linear activation functions induce further scaling
symmetries (Godfrey et al., 2022); e.g. for a constant λ ≥ 0, ReLU(λx) = λReLU(x),
which means scaling the input weights to a neuron and applying the inverse scaling to
the outgoing weights again preserves neural network’s function. In addition to these
static symmetries, other forms of symmetries might arise from the structure of the data,
or dynamically during periods of training (Zhao, Dehmamy, et al., 2024).

Accounting for these symmetries in a weight-space learning task by using architec-
tures with the correct inductive biases, through data augmentation (Shamsian et al.,
2024), or by removing the symmetries by mapping neural networks to canonical repre-
sentations (Pittorino et al., 2022) as we will do can reduce the effective dimensionality
of the problem and make weight-space learning more efficient.

Neural Networks as Graphs (Chapter 5)

A neural network can naturally be modeled as a graph, and this has fueled a recent
line of work building graph neural networks (GNNs) that take as input other neural
networks (Kofinas et al., 2024; Lim, Maron, et al., 2023; Kalogeropoulos et al., 2024).
The nodes often correspond to the neurons in an MLP or channels in a convolutional
network and the edges to the weights. Used with the appropriate positional encodings,
this graph formalism provides an effective way of handling the permutation symmetries
of various kinds of neural networks including transformers and neural networks with
residual connections, and has also been extended to account for scaling symmetries
(Kalogeropoulos et al., 2024). Furthermore, since a GNN is not restricted to graphs with
a certain structure, weight-space GNNs have the additional benefit that the same GNN
can be used to process different neural networks, even those with different architectures
altogether.

As part of our flows, we process neural networks using GNNs, more specifically the
Relational Transformer architecture (Diao and Loynd, 2023; Kofinas et al., 2024) that
incorporates an attention mechanism with edge updates.

4



1. Introduction

Generative Modeling with Flow Matching (Chapter 3)

Flow matching (FM) (Lipman, Chen, et al., 2023; Albergo et al., 2023; Liu et al.,
2022; Tong et al., 2023) generalizes diffusion models with a more flexible framework
and a simple simulation-free regression objective. Given two sample-able marginal
distributions p0 and p1, a coupling (x0, x1) is sampled from a joint distribution, and xt

from the intermediate distribution pt(xt | x0, x1) conditioned on the endpoints with t
sampled within the interval [0, 1]. A neural network (velocity model) is then trained
to predict the conditional velocity ut(xt | x0, x1), such as x1 − x0. Marginalizing this
linear vector field over the joint coupling then results in a more complex vector field
that transforms p0 to p1, which is estimated by solving a differential equation with the
velocity given by the trained velocity model. This flow matching framework can also be
extended to data with more general geometries such as Riemannian manifolds (Chen
and Lipman, 2023).

We will train our models using flow matching, with a Gaussian prior and the
posterior samples collected through the neural networks’ optimization trajectories,
experimenting with different couplings. Our slightly modified flow matching training
setup is described in more detail in Section 3.2.2.

Flows with Different Geometries (Chapter 6)

We propose three flow models that handle the underlying geometric structure in
different ways, which enables us to evaluate the effect of geometric considerations
more precisely. We consider ReLU MLPs, and first align all neural networks to the
same reference network using the re-basin operation (Ainsworth et al., 2023; Peña et al.,
2023) that permutes a network’s weights to minimize the loss barrier between two
networks. To handle the scaling symmetries, we build on the canonicalization procedure
of (Pittorino et al., 2022), where each neuron’s incoming weights are normalized and its
outgoing weights are inversely scaled to preserve the function being computed; the last
layer is further normalized globally in classification networks. This gives the neural
network a product geometry, with the bias vectors as Euclidean vectors, intermediate
neurons’ incoming weight vectors on the hypersphere, and the last layer (optionally)
on the hypersphere as a whole.

We then compare our three flows: first a Euclidean flow that ignores the scaling
symmetries and models each weight vector in Euclidean space, then a Normalized flow
with the weights embedded in the product geometry but with the velocity field defined
in Euclidean space (i.e. inside the hyperspheres), and finally a Geometric flow with
the velocity field defined on the product geometry as well using the Riemannian Flow
Matching framework (Chen and Lipman, 2023).

5



1. Introduction

Overview of Results (Chapter 7)

We evaluate our flows on a variety of tasks after training them on samples obtained with
gradient-based optimization methods and show that for small networks on relatively
easier tasks, they can directly generate weights matching or sometimes exceeding the
performance of weights optimized with gradient-based methods. On more complex
tasks and larger models, while direct generation does not match the quality of optimized
weights, Bayesian model averaging over a number of samples leads to comparable
predictive performance. Then we show that a flow trained on weights from one task
can be transferred to another task, either by using the sampled weights as learned
initializations, or by guiding the sampling process with task gradients. Our results
finally demonstrate that in particular the Euclidean and Geometric flows can also
generalize to different architectures for the same base task, and that there are still gains
to be made by further scaling up our models.

1.3. Contributions

Our main contributions are as follows:

• We utilize flow matching in weight-space for the first time. Our Euclidean flow
learns to transport weights in Euclidean space directly, then we model the neural
networks on a product manifold by removing their scaling symmetries to build
our Normalized flow, and finally in our Geometric flow we utilize the Riemannian
Flow Matching framework to define a vector field over this product manifold.

• We empirically validate our proposed methods by learning to approximate the
posterior distributions of neural networks of various sizes on different tasks. We
observe that they can generate samples competitive with weights optimized via
gradient-based methods, and that can still be scaled up for better performance.

• We show that our flows can also generalize to different architectures, such as by
sampling more accurate weights for a larger mode. This indicates they do not
learn to model just a single posterior distribution, but instead learn to model
weights on the underlying task more generally.

• Finally we apply guidance with task gradients during sampling as an instance of
transfer learning and show that a flow built with weights trained on one dataset
can be used to sample weights that are accurate on another dataset.

6



2. Bayesian Deep Learning

A primary use case for a generative model over neural network weights is in Bayesian
deep learning, where it can allow efficient inference by transporting the prior distri-
bution to the posterior. Thus, to motivate the rest of the discussion, we first give an
overview of concepts from Bayesian deep learning. Section 2.1 is a general introduc-
tion, followed by a review of inference methods (Laplace approximations, variational
inference, MCMC-based methods) typically used for Bayesian neural networks.

2.1. General Concepts

Bayesian deep learning aims to quantify the uncertainty in neural networks through
probability distributions over their parameters, rather than obtaining a single solution
by an SGD-like optimization method (refer to (David J C MacKay, 1992a; Neal, 1996)
for foundational work and (Goan and Fookes, 2020; Arbel et al., 2023) for more recent
reviews). With the posterior distribution p(θ|D) over weights θ conditioned on the
dataset D, predictions are obtained via Bayesian model averaging:

p(y|x,D) = Eθ∼p(θ|D) [p(y|x, θ)] =
∫

p(y|x, θ)p(θ|D)dθ, (2.1)

where the prediction is an expectation over the posterior. Note that since the forward
pass through the model p(y|x, θ), is deterministic, the uncertainty in predictions results
solely from the uncertainty over parameters. To bring things together, Bayesian inference
over neural network weights consists of three steps:

1. Specify prior p(θ).

2. Compute/sample posterior p(θ|D) ∝ p(D|θ)p(θ).

3. Average predictions over the posterior.

The last step only requires forward passes through the model and thus is straightfor-
ward. The first two steps require deeper consideration.

7



2. Bayesian Deep Learning

2.2. Priors

Specifying a prior mainly consists of two choices: specifying an architecture, and
specifying a probability distribution over the weights. A standard choice for a prior
distribution is an isotropic Gaussian, which is an uninformative prior but therefore
widely applicable and flexible.

Different architectural decisions also induce different distributions over functions,
even if the flattened weight vectors are identical, meaning that the choice of an architec-
ture further specifies a prior in function space. As a simple example, keeping the depth
and width of a neural network constant, even just changing the activation function
from a ReLU to a sigmoid results in a different distribution of functions. The functional
distribution can also be specified in a more deliberate way; e.g. a translation-invariant
convolutional neural network, or a group-equivariant network (Cohen and Welling,
2016) puts probability mass only on functions satisfying certain equivariance constraints
depending on the task at hand.

We keep this discussion short since the choice of a prior has tangential impact in the
rest of the presentation, and we refer to recent reviews such as (Fortuin, 2022) for a
more detailed treatment of Bayesian neural network priors.

2.3. Inference

Inference in BNNs is a rich research area covering a wide range of methods. In this
section we give an overview of key methods used to approximate BNN posteriors, and
refer to works such as (Arbel et al., 2023) and (Murphy, 2023) for more comprehensive
treatments.

2.3.1. Laplace Approximation

A Laplace approximation to the posterior (David J. C. MacKay, 1992b) is essentially a
Gaussian distribution centered at the MAP estimate of the posterior, with the covariance
matrix given by the log likelihood’s Hessian’s inverse. This intuitively corresponds to a
local second-order Taylor expansion around the MAP estimate.

A Laplace approximation is simple and fast, but ignores the posterior’s multi-
modality as it only captures a single mode. Nevertheless, it has been an active topic of
research (Daxberger et al., 2021) due to its simplicity and for use cases benefiting from
local posterior estimates.

8



2. Bayesian Deep Learning

2.3.2. Variational Inference

In a variational approximation, the posterior is estimated with a parametric distribution
whose parameters are learned to minimize the KL-divergence between the posterior
and the variational approximation; e.g. learning the mean and covariance matrix of a
Gaussian distribution. The parameters are often learned to optimize the evidence lower
bound (ELBO) using reparametrization tricks (Kingma and Welling, 2022; Blundell
et al., 2015).

Variational approximations trade off expressivity for tractable optimization and thus
can learn more complex distributions than a Gaussian, e.g. by accounting for sym-
metries in a neural network’s posterior landscape (Gelberg et al., 2024). Nevertheless,
KL-based objectives may require a large number of likelihood evaluations and often
suffer from mode collapse, where the approximation captures only one mode of the
distribution (Felardos et al., 2023).

2.3.3. Sampling-Based Inference

Rather than parametrize or approximate the posterior distribution, sampling-based
methods which our flow is a part of, attempt to sample from the posterior directly.
Two main approaches to sampling are Monte Carlo methods (Barbu and Zhu, 2020)
such as Markov chain Monte Carlo or importance sampling, and map-based methods
(Marzouk et al., 2016) such as normalizing flows (Rezende and Mohamed, 2015).

Monte Carlo Methods

Monte carlo methods are designed around a few core ideas such that the samples are
asymptotically from the true posterior, and are often used to compute expectations of
the form

Ex∼p(x) [h(x)] . (2.2)

A simple approach is Importance Sampling (IS) (Kahn and Marshall, 1953), where
samples from a proposal distribution q are re-weighted with w(x) = p(x)/q(x) to
estimate the expectation in Equation 2.2:

Ex∼q(x)

[
p(x)
q(x)

h(x)
]
=

∫
q(x)

p(x)
q(x)

h(x)dx =
∫

p(x)h(x)dx = Ex∼p(x) [h(x)] . (2.3)

While IS does not require sampling from the posterior, the rate of convergence for
the estimate depends on the variance of the IS weights, i.e. how well the proposal
distribution aligns with the true posterior.

Alternatively, Markov chain Monte Carlo (MCMC) methods such Hamiltonian Monte
Carlo (Neal, 2011), Stochastic Gradient Monte Carlo (Ma et al., 2015), or Langevin

9



2. Bayesian Deep Learning

Monte Carlo (Roberts and Tweedie, 1996) construct a Markov chain of samples that
eventually converges (mixes) to the true posterior. This is often achieved through a
Metropolis-Hastings correction step (Metropolis et al., 1953; Hastings, 1970) where a
proposed step z from the current state x is accepted with probability

a(x, z) = min
{

1,
p(z)
p(x)

q(z, x)
q(x, z)

}
(2.4)

where q(x, z) gives the transition probability from x to z.
While chain-based methods are heavily used in practice, they suffer from various

shortcomings such as generating correlated rather than independent samples, and
requiring a large number of likelihood evaluations some of which is later rejected.
Measuring the convergence of a chain is also challenging, lacking concrete rules.

Map-Based Sampling

Map-based methods (Marzouk et al., 2016) are instead use a map T : Rn → Rn that
transforms samples from the prior distribution q to samples from the posterior p, such
that the push-forward of the prior gives the posterior distribution: T♯q = p. Such a map
can generate independent, uncorrelated samples without any likelihood evaluations
which is a desirable property.

The theory of map-based sampling is closely related to optimal transport (OT) (Peyré
and Cuturi, 2020; Santambrogio, 2015) with a history going back to the 18th century
(Monge, 1781), where the goal is to find the map T that minimizes some cost c(x, T(x))
such as Euclidean distance. Under the later relaxation of the problem by Kantorovich
(Kantorovitch, 1958) to joint distributions rather than deterministic maps to minimize
the cost over the joint distribution with marginal constraints, the optimal map is
guaranteed to exists given mild conditions.

Nevertheless, while a map-based approach has benefits over an MCMC method
such as providing less ambigous convergence criteria by reducing the problem to
optimization, the optimal map is often hard to find, and therefore approximate maps
are used instead. Such maps can be learned as static (Rezende and Mohamed, 2015) or
continuous normalizing flows (Chen, Rubanova, et al., 2018) which have seen risign
interest recently with developments such as flow matching which we now turn to.

10



3. Flow Models

3.1. Overview

We train our flow using flow matching (Lipman, Chen, et al., 2023; Albergo et al., 2023;
Liu et al., 2022), which generalizes diffusion models with a more flexible design space.
In this section we first formulate the flow matching objective (Sec. 3.2), explain the
design choices it enables (Sec. 3.2.3), and describe in more detail how samples (Sec. ??)
and likelihoods (Sec. 3.4) can be obtained using a flow model.

3.2. Flow Matching

Flow matching, first proposed in (Lipman, Chen, et al., 2023; Albergo et al., 2023; Liu
et al., 2022) (see (Lipman, Havasi, et al., 2024) for a recent comprehensive overview),
aims to solve the problem of dynamic transport, i.e. finding a time-dependent vector
field to transport the source (prior) distribution p0 to the target (data) distribution p1.
More formally, the vector field ut : [0, 1]× Rd → Rd leads to the ordinary differential
equation (ODE)

dx = ut(x)dt (3.1)

and induces a flow ϕ : [0, 1]× Rd → Rd that gives the solution to the ODE at time t
with starting point x0, such that

d
dt

ϕt(x0) = ut(ϕt(x0)) (3.2)

ϕ0(x0) = x0. (3.3)

Starting with p0, transformed distributions pt can then be defined using this flow with
the push-forward operation

pt := [ϕt]#(p0) (3.4)

and the instantaneous change in the density satisfies the continuity equation

∂p
∂t

= −∇ · (ptut) (3.5)

11



3. Flow Models

which means that probability mass is conserved during the transformation. With
these formulations, we say the vector field ut generates the probability path (also called
interpolant) pt.

3.2.1. The Objective

The formulation above could also be applied to traditional continuous normalizing
flows (CNFs) (Chen, Rubanova, et al., 2018), and flow matching is an instantiation of
CNFs. However, continuous normalizing flows have in the past been trained using
objectives which required solving and then backpropagating through the ODE, such
as KL-divergence or other likelihood-based objectives, which made training costly.
This problem was later addressed with diffusion models and their simpler regression
objectives such as score matching and denoising (Sohl-Dickstein et al., 2015; Song et al.,
2021; Ho et al., 2020) that proved to be very effective. The flow matching objective is
also formulated as a simulation-free regression objective, and is more flexible than the
diffusion objectives.

As explained in Section 3.2, the goal in flow matching is to learn a vector field
vθ : [0, 1]× Rd → Rd parametrized by a neural network.1 If we know the ground truth
vector field u and can sample from the intermediate pt’s, we can directly optimize the
flow matching objective

LFM(θ) := Et∼U (0,1),xt∼pt(x)∥vθ(t, xt)− ut(xt)∥2 (3.6)

by first sampling a time point t and then xt ∼ pt. However in practice, we neither have
a closed form expression for u nor can sample from an arbitrary pt without integrating
the flow.

The conditional flow matching (CFM) framework first introduced in (Lipman, Chen,
et al., 2023) and then extended in (Tong et al., 2023) solves this problem by formulating
the intermediate probability paths as mixtures of simpler paths,

pt(x) =
∫

pt(x | z)q(z)dz (3.7)

where z is the conditioning variable and q(z) a distribution over z (e.g. with z :=
(x0, x1), q(z) = p0(x0)p1(x1), ut(x | z) = x1 − x0, and pt(x | z) = N (x | (1 − t)x0 +

tx1, σ2)). Then similar to how pt’s were generated by the vector field ut, the conditional
probability paths pt(x | z) are generated by conditional vector fields ut(x | z), and as

1For conciseness, we interchangeably use the subscripts for vector fields to denote time (ut(x)) and
parameters (vθ(t, x)).
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3. Flow Models

shown in (Tong et al., 2023) ut can be decomposed in terms of these conditional vector
fields as

ut(x) = Ez∼q(z)
ut(x | z)pt(x | z)

pt(x)
. (3.8)

Then similar to Equation 3.6, we have the conditional flow matching objective

LCFM(θ) := Et∼U (0,1),z∼q(z),xt∼pt(x|z)∥vθ(t, xt)− ut(xt | z)∥2. (3.9)

That is, we first sample a conditioning variable z, and then regress to the conditional
vector field ut(x | z). Thus we obtain a tractable objective by defining sample-able
conditional probability paths and a tractable conditional vector field. Moreover, as
shown in (Tong et al., 2023), the FM and CFM objectives are equivalent up to a constant
and therefore

∇θLFM(θ) = ∇θLCFM(θ), (3.10)

meaning we do not lose the expressive power of the FM objective by regressing only
to the conditional vector fields. As we will show in Section 3.2.3, the choice of these
conditional probability paths, vector fields, along with the conditioning variable itself,
makes the flow matching approach particularly flexible.

3.2.2. Training

To sum up the discussion in the previous section, a step of training a flow model using
the CFM objective (Equation 3.9) proceeds as follows:

1. Sample t ∼ U (0, 1), z ∼ q(z), and xt ∼ pt(x | z).

2. Compute LCFM(θ) = ∥vθ(t, xt)− ut(xt | z)∥2.

3. Update θ with ∇θLCFM(θ).

An equivalent approach with the loss computed in the space our data lies is to predict
the target x1 rather than the velocity and compute the loss as ∥vθ(t, xt)− x1∥2, and the
velocity as vθ(t, xt)− x0 with x0 the starting point for integration.

3.2.3. Couplings and Conditional Paths

With this framework established, the three main design choices for building a flow
matching model are choosing the coupling q(z), the conditional “ground truth” vector
field ut(x | z), and the conditional probability paths pt(x | z). Starting with an arbitrary
source distribution p0 and target distribution p1, Tong et al. (2023) propose three
different ways of constructing conditional paths from couplings between p0 and p1, of
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3. Flow Models

which we focus on two (independent and optimal transport couplings). In all setups,
the condition variable z corresponds to a pair (x0, x1) of source and target points.

Independent Coupling. The simplest way of obtaining is to sample independently
from p0 and p1; i.e. q(z) = p0(x0)p1(x1), with the conditional paths and the vector field
defined as

pt(x | z) = N (x | (1 − t)x0 + tx1, σ2) (3.11)

ut(x | z) = x1 − x0. (3.12)

The conditional paths and the coupling defined this was are easily easy to sample from,
but have undesirable properties such as crossing paths which which can lead to high
variance in the ground truth vector field for a specific point and time. Moreover in
practice, independent couplings can lead to curved paths that incur higher integration
errors, as there is no notion of straightness considered in this formulation.

Optimal Transport. To obtain straighter and shorter paths that are easier to integrate,
Tong et al. (2023) propose to use the static 2-Wasserstein optimal transport map π as
the coupling; i.e.

q(z) = π(x0, x1), (3.13)

with the conditional paths and vector field defined as in Equations 3.11 and 3.12.
The flow model thus obtained solves the dynamic optimal OT problem as σ2 → 0
(Proposition 3.4 in (Tong et al., 2023)). However, computing the exact OT map for the
entire dataset is challenging, especially in high dimensions as in our problem. It can
instead be approximated using mini-batches (Fatras et al., 2021). This means at the
end the OT problem is solved only to an approximation, but nevertheless results in
straighter paths that cross less often, since intuitively an x0 ∼ p0 is more likely to be
coupled with x1 ∼ p1 closer to it rather than an x1 chosen uniformly random.

3.3. Riemannian Flow Matching

When our data lies on a manifold, flow matching can be extended to define a flow over
the manifold as well. Such an approach can both lead to a better scalable generative
model by reducing the effective dimensionality of the problem, and make learning
easier by introducing a strong inductive bias to the problem. Discrete and continuous
normalizing flows have previously been adapted to Riemannian manifolds (Gemici
et al., 2016; Mathieu and Nickel, 2020; Lou et al., 2020), and in this section we begin
with a brief overview of Riemannian manifolds (we refer to textbooks on the topic such
as (John M. Lee, 2018) for a more rigorous treatment), and then explain how an ODE
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3. Flow Models

Figure 3.1.: Visualizing the exponential, logarithmic, and parallel transport maps on
a manifold. The unique geodesic curve γ between p and q with γ̇(0) = v
corresponds to the great circle of the sphere coinciding with the upper
boundary in the diagrams.

over a Riemannian manifold can be learned following the framework of Riemannian
flow matching (Chen and Lipman, 2023).2

3.3.1. A Brief Review of Riemannian Manifolds

A smooth manifold M is a smooth topological space that is locally Euclidean. The local
Euclidean structure is represented by charts mapping open sets U ⊂ M to Rn. A set of
charts covering the entire manifold is called an atlas, and smoothness arises from the
transitions between overlapping charts being smooth functions. Each point x ∈ M is
equipped with a tangent space Tx M that is a vector space containing vectors tangent to
M, such as velocities. In addition to being a smooth manifold, a Riemannian manifold
also contains a Riemannian metric g that defines an inner product ⟨u, v⟩g = uTGv
for u, v ∈ Tx M and positive definite matrix G. A metric most importantly enables us

to define angles and distances over the manifold as ∥u∥g =
√
⟨u, u⟩g =

√
uTGu and

cos θ =
⟨u,v⟩g

∥u∥g∥v∥g
.

A curve is a smooth function γ : [0, 1] → M, and tangent vectors v ∈ Tx M can be
expressed as time derivatives γ̇(t) of curves with γ(t) = x. Using the metric g, we can
measure the length of a curve by computing the length of the tangent vector at each
point along the curve:

|γ| =
∫ 1

0
∥γ̇(t)∥2

gdt. (3.14)

The “shortest” curve in this sense connecting two points x, y ∈ M is called a geodesic.
We can thus define a distance between two points as the length of a (not necessarily

2The presentation in this section is additionally based on the Geometric Generative Models tutorial by
Joey Bose, Alexander Tong, and Heli Ben-Hamu at the 2024 Learning On Graphs Conference.
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unique) geodesic connecting them.
A manifold is also equipped with three operations that we will make use of: the

exponential map, the logarithmic map, and parallel transport (see Figure 3.1 for a visual
depiction). The exponential map expx : Tx M → M at a point x ∈ M maps a tangent
vector v to the point γ(1) ∈ M where γ is the unique geodesic satisfying γ(0) = x
and γ̇(0) = v. The logarithmic map logx : M → Tx M maps a point y ∈ M back
to the tangent vector v := γ̇(0). It is generally the inverse of the exponential map.
Finally the parallel transport map PTx→y : Tx M → Ty M transports a tangent vector
v := γ̇(0) along the geodesic with γ(1) = y keeping the lengths and angles between
the transported vectors constant. Together, these three operations allow us to move
along geodesics with tangent vectors as the velocities, and transport tangent vectors to
the same tangent space to be able to compute distances between them, which are all
steps required to build a flow model over a Riemannian manifold.

3.3.2. Flow Models over Manifolds

Riemannian flow matching (RFM) (Chen and Lipman, 2023) extends the flow matching
framework to Riemannian manifolds. As the three key design choices, we need to
define a coupling q, conditional probability paths pt, and a conditional vector field ut.

A coupling can be defined simply by sampling x0 ∼ p0 and x1 ∼ p1 independently,
or with a mini-batch optimal transport map with the distances defined above using
geodesics. For t ∈ [0, 1], the geodesic interpolation xt ∼ pt(xt | x0, x1) (analogous to
linear interpolation in Euclidean space) between x0 and x1 is computed as

xt := expx0
(t logx0

x1) (3.15)

and the conditional vector field ut as

ut(xt | x0, x1) :=
logxt

x1

1 − t
. (3.16)

Finally to solve the ODE, we compute one Euler integration step as

dxt = ut(xt)dt (3.17)

xt+1 = expxt
(vθ(t, xt)∆t) (3.18)

where ∆t is the step size.

3.4. Computing Likelihoods

In earlier normalizing flows that aim to learn a static mapping between the two
distributions (Rezende and Mohamed, 2015), given source samples x0 ∼ p0, likelihoods
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of the generated samples z = f (x0) ≈ p1 can be computed exactly via the change of
variables formula

log p1(z) = log p0(z)− log det
∣∣J f (z)

∣∣ (3.19)

where J f is the Jacobian of f . Thus, we can obtain exact likelihoods for the generated
samples by taking the determinant of the Jacobian of the normalizing flow. Since
Jacobian computations can be costly, this has motivated work on designing normalizing
flows with easier to compute Jacobians, such as RealNVP (Dinh et al., 2017).

In a continuous normalizing flow on the other hand, the instantaneous change of variables
formula (Chen, Rubanova, et al., 2018) defines the change in probability mass through
time. Given that the vector field vt is continuous in t and uniformly Lipschitz continuous
in Rd, it holds that

d log pt(ϕt(x))
dt

= −div(vt(ϕt(x))) (3.20)

= −Tr
(

dvt(ϕt(x))
dt

)
(3.21)

where dvt(ϕt(x))
dt =: Jv(ϕt(x)) is the Jacobian of the vector field. We integrate over time

to compute the full change in probability:

log p1(ϕ1(x)) = log p0(ϕ0(x))−
∫ 1

0
Tr(Jv(ϕt(x)))dt. (3.22)

Then we can integrate the Jacobian trace of the vector field through time (simultaneously
with sampling) to obtain exact likelihoods for the generated samples.

3.4.1. Faster Likelihoods Through Trace Estimation

However, materializing the full Jacobian of the vector field can be prohibitively ex-
pensive, especially if the task is very high dimensional (as in our case) since the log
determinant computation has a time complexity of O(d3) (Grathwohl et al., 2018)
without any restrictions on the structure of the Jacobian.

To alleviate this problem, (Grathwohl et al., 2018) propose to use the Hutchinson trace
estimator (Hutchinson, 1990) for an unbiased estimate of the Jacobian trace of a square
matrix:

Tr(Jv) = Ep(ϵ)

[
ϵT Jvϵ

]
(3.23)

where p(ϵ) is chosen such that E[ϵ] = 0 and Cov(ϵ) = I, typically a Gaussian or a
Rademacher distribution. Then, we can use this estimator in place of the explicit trace
computation in Equation 3.22 and compute the likelihoods as

log p1(ϕ1(x)) = log p0(ϕ0(x))−
∫ 1

0
Ep(ϵ)

[
ϵT Jv(ϕt(x))ϵ

]
dt. (3.24)
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The performance benefit of using the Hutchinson trace estimator results from the
fact that the Jacobian-vector product Jvϵ can be computed very efficiently by automatic
differentiation (Baydin et al., 2018), giving the whole approach a time complexity of
O(d) only. Due to this significant performance improvement and being an unbiased
estimate, the Hutchinson trace estimator has been widely used in the diffusion/flow
model literature (Lipman, Chen, et al., 2023; Song et al., 2021).

18



4. Symmetries of Neural Network Weights

Symmetries in data, such as rotation symmetries in molecules or translation symmetries
in images, can be used to obtain useful inductive biases for ML models (Bronstein
et al., 2021; Weiler, 2023). By restricting the search space to functions that respect
those symmetries, such inductive biases make training more data-efficient (Brehmer
et al., 2024). Since our data modality is neural network weights, taking the symmetries
of neural networks into account can likewise make learning in weight space more
effective.

Given a neural network f with parameters θ, we define a symmetry as an operation ϕ

that leaves the function computed by the neural network unchanged; i.e. fϕ(θ)(x) =
fθ(x). We are further interested only in the static symmetries that hold for any θ and
thus can more reliably be used as inductive biases, rather than dynamic symmetries
specific to a certain value of θ. Such symmetries of neural network weights have been
studied for a long time (Hecht-Nielsen, 1990), and are still key considerations for
understanding the loss landscape and training dynamics of neural networks (Brea et al.,
2019; Simsek et al., 2021; Lim, Putterman, et al., 2024; Zhao, Gower, et al., 2024).

4.1. Permutation and Scaling Symmetries of Neural Networks

A typical neural network with non-linear activations has two main kinds of symmetries:
permutation symmetries and scaling symmetries. Permutation symmetries arise from the
connectivity structure of the neural network, and scaling symmetries mainly arise from
the particular non-linearities.

More formally, consider a two-layer MLP with weight matrices W1, W2 and element-
wise activations σ; i.e. fθ(x) = W2σ(W1x), ignoring the biases for simplicity but the
following discussion applies to the biases as well. Let P be an arbitrary permutation
matrix. We can permute the hidden neurons, and apply the same permutation to their
outgoing weights as well to keep the function unchanged:

fθ(x) = W2σ(W1x) = W2PTσ(PW1x). (4.1)

Since σ is applied element-wise, we have W2PTPσ(W1x) which preserves the function
as PTP = I. Similarly, convolutional neural networks’ channels can be permuted
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4. Symmetries of Neural Network Weights

Figure 4.1.: Visual illustration of example permutation and scaling symmetries of
neural networks. Top: Permuting the neurons at one layer and then apply-
ing the same permutation to the outgoing weights preserves the function
being computed. Bottom: For a ReLU activation, multiplying the input
with a non-negative constant and the output with its inverse preserves the
function.

while preserving the function. More generally, Lim, Maron, et al. (2023) show that the
permutation symmetries of any neural network correspond to graph automorphisms of
its neural DAG, constructed with each edge corresponding to a parameter (e.g. directly
the computational graph for MLPs, or with each filter corresponding to a node for
CNNs).

In addition to these permutation symmetries, element-wise activation functions such
as ReLU introduce further scaling symmetries to neural networks. For example, for
the ReLU activation it holds for any real number λ > 0 that ReLU(λx) = λReLU(x).
This means the input weights to a layer with ReLU activations can be multiplied with
a positive number, and the function will remain unchanged as long as the output
weights are scaled down with the same factor. Although we will mostly consider ReLU
networks in the following sections, it is worth noting that such scaling symmetries
exist for activation functions besides ReLU as well. (Godfrey et al., 2022) have shown
that symmetries resulting from activation functions can be associated with different
intertwiner groups, and provide concrete examples of these groups for various activation
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Figure 4.2.: Linear mode connectivity. The hypothesis asserts that up to permutations,
low-loss points in a neural network’s loss landscape are linearly connected.

functions.

4.2. Linear Mode Connectivity

Closely related to the literature on symmetries of neural network weights is the topic
of linear mode connectivity, concerned with finding (linear) low-loss paths between SGD-
optimized weights. Finding such paths is useful for many downstream applications,
such as ensembling neural networks (Garipov et al., 2018) by finding accurate weights
with different representations without training, or model merging (Stoica et al., 2024).

Garipov et al. (2018) first formulated the problem as finding parametrized curves
between NN weights, minimizing the loss across the curve. It was later conjectured by
Entezari et al. (2022) that up to permutation symmetries, such low-loss paths are linear.
The linear mode connectivity hypothesis has since then given rise to a fruitful research
area (Ferbach et al., 2024; Rossi et al., 2023; Zhao, Dehmamy, et al., 2023).

For our purposes, modes being linearly connected would imply that finding the
optimal permutations could effectively reduce the number of modes in the weight-space
posterior, making it easier to approximate. Accounting for this multi-modality has been
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shown to improve the effectiveness of Bayesian neural networks (Sommer et al., 2024).
With this motivation, we next focus on the literature around finding such permutations.

4.3. Aligning Neural Networks

The problem of finding a permutation of one neural network weights to obtain a linear
low-loss path with another neural network, we call aligning neural networks, has given
rise to a high number of methods over years, the entirety of which could be a thesis in
itself. For instance, (Ainsworth et al., 2023) propose various approaches. The first is a
data-based approach that matches the activations of models A and B of each layer,

P∗ = arg min
P∈Sd

n

∑
i=1

∥ZA − PZB∥2 (4.2)

with d dimensional activations Z for n data points. This is an instance of the linear as-
signment problem which can be solved in polynomial time (Crouse, 2016). An alternative
is to align the weights of the neural networks directly, which can again be reduced to
a linear assignment problem and is more efficient since it requires no forward passes
over the model, but sacrifices accuracy by ignoring the data.

Peña et al. (2023) propose a more flexible framework, making it possible optimize
for any differentiable objective, and we also use their approach in the rest of our work.
Peña et al. (2023) start by relaxing the constraint of binary permutation matrix P ∈ Π
to obtain unconstrained X ∈ Rm×n. Such a matrix can then be mapped to the space of
binary permutation matrices via the Sinkhorn operator:

Sτ(X) = arg max
P∈Π

⟨P, X⟩F + τh(P) (4.3)

where F denotes the Frobenius norm and entropy h(P) = −∑ P log P. Then the
optimization is performed over Rm×n, and a binary permutation matrix is obtained
through the Sinkhorn operator.

The main advantage of the approach of Peña et al. (2023) is that it can be used with
arbitrary differentiable objectives. To align the parameters θA and θB, with πP denoting
the permutation applied to the weights, Peña et al. (2023) propose three objectives. First
is a straightforward weight-matching similar to (Ainsworth et al., 2023)

LL2 := ∥θA − πP(θB)∥2, (4.4)

followed by two data-based objectives. Minimizing the mid-point loss between the two
weights as

LMid := L
(

θA + πP(θB)

2

)
(4.5)
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or the loss at a random intermediate point

LRnd := L ((1 − λ)θA + λπP(θB)) (4.6)

with λ ∼ U (0, 1). At the end, particularly the data-based losses result in more effective
permutations than the method of (Ainsworth et al., 2023), and we choose to use the
approach of Peña et al. (2023) in the rest of our work also considering its flexibility.

4.4. Canonical Representations of Neural Networks

This discussion around permutation and scaling symmetries of neural networks culmi-
nates with canonical representations of neural networks, i.e. unique representations for
each set of permutation/scale-symmetric neural networks, limiting our discussion to
ReLU networks for simplicity. Following the work of (Pittorino et al., 2022), this can
achieved in two steps given a set of neural networks {θi}N

i :

1. Align all neural networks to a single reference neural network θ′, using the ap-
proach of (Peña et al., 2023).

2. For each intermediate layer l and neuron k, scale down the incoming weights
and biases by the norm of the incoming weight vector, |wl

k|−1, and the outgoing
weights by |wl

k|. Additionally for classification tasks, normalize the last layer’s
weights to

√
C, with C the number of classes. This does not change the predicted

label due to the argmax operation at the last layer.

With these two operations, the permutation and scaling symmetries are “broken,”
as all the neural networks that compute the same function up to permutation and
scaling are now mapped to the same point in weight space. Nevertheless, while the
scaling symmetry is broken exactly, the permutation symmetry is broken up to an
approximation since the alignment methods (Ainsworth et al., 2023; Peña et al., 2023)
only output approximate solutions. For this reason, as we will describe in the next
section, we use graph neural networks to fully account for the permutation symmetries.
This canonicalization also gives a specific geometric structure to the set of neural
network weights. Each neuron, characterized by its incoming weights, now lies on the
unit hypersphere, and each layer in turn has a product geometry of hyperspheres. This
enables the computation of geodesic paths and distances between neural networks.
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5. Weight-Space Learning

Figure 5.1.: Weight-space learning. Neural network weights are processed using other
neural neural networks for tasks such as regression (e.g. predicting the
loss of unseen weights), classification (e.g. ), or generation (e.g. learned
optimization).

Training neural networks on other neural networks’ weights has been an active
research area for a long time (Ha et al., 2016; Krueger et al., 2018), but has seen
increasing interest recently with new neural network architectures being proposed
(Lim, Maron, et al., 2023; Kofinas et al., 2024; Zhou, K. Yang, et al., 2023; Zhou, Finn,
et al., 2024). This wave of interest, combined with developments around other problems
such as generative modeling, has led to a wider range of applications of weight-space
learning, including generative modeling of neural network weights (Peebles et al., 2022;
Erkoç et al., 2023) and machine unlearning using weight-space models (Rangel et al.,
2024). In this section, we provide a review of recent work on weight-space architectures
and weight-space generative models.

5.1. Architectures

5.1.1. Graph Neural Networks

A graph neural network (GNN) (Wu et al., 2022) takes as input a graph (V, E) with
nodes ni ∈ V and edges eij ∈ E with i, j node indices, and operate by iteratively
updating the node and edge features of dV and dE dimensions respectively. Although
edge features may be omitted, a general node and edge GNN update step can be
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expressed as

nl+1
i = ϕN

ni,
⊕
j∈Ni

ϕM(el
ij, nl

i , nl
j)

 (5.1)

el+1
ij = ϕE

(
el

ij, el
ij, nl+1

i , nl+1
j

)
(5.2)

where ϕN , ϕM, ϕE are the node, message, and update neural networks, and
⊕

is a
permutation-invariant aggregation operation. Ni is the neighborhood of node i which the
update message is aggregated over. While directly using the connectivity structure of
the input graph is a typical choice, methods using the entire graph (Diao and Loynd,
2023) or dynamically learning a structure (known as graph rewiring) (Gutteridge
et al., 2023) also exist. Note that the weights of the neural networks are shared
across nodes/edges and update steps, making the number of parameters in a GNN
independent of the input graph’s size.

Different GNNs are characterized by how they construct the neural networks
ϕN , ϕM, ϕE. Graph convolutional networks (Kipf and Welling, 2016) set ϕM(el

ij, nl
i , nl

j) =

ϕM(nl
j) and

⊕
to be averaging. Graph attention networks (Veličković et al., 2018)

replace the average with self-attention. Transformers (Vaswani et al., 2017) can also be
classified as GNNs, where Ni = V and ϕM is self-attention.

5.1.2. Graph Neural Networks in Weight-Space

Since a neural network can be represented as a graph via its computational graph,
GNNs make for a natural choice in constructing weight-space architectures, and there
has been a recent line of work in this direction (Zhou, K. Yang, et al., 2023; Lim,
Maron, et al., 2023; Kofinas et al., 2024; Kalogeropoulos et al., 2024). We build on the
architecture of (Kofinas et al., 2024) and explain its workings in this section.

Construcing Graphs from Neural Networks

An MLP with L layers, consisting of weight matrices {W(1), ..., W(L)} and bias vectors
{b(1), ..., b(L)} with W(l) ∈ Rdl×dl−1 and bl ∈ Rdl can be considered a graph directly
following its computational graph, with nodes corresponding to the neurons and edges
to the parameters. Then in its simplest form, edge features are individual parameters,
and node features are the individual bias components, with dV = dE = 1, although
including additional features such as “probe features” that correspond to the activations
of certain inputs are also possible. This construction, since it follows the computational
graph, respects the permutation symmetries of nodes in subsequent layers as described
in Chapter 4.
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For convolutional neural networks (CNNs), the permutation symmetries occur at the
level of individual channels. Permuting the filters in one layer permutes the channels
at the subsequent layer, and permuting the filters of the subsequent layer with the same
permutation preserves the function being computed. We can obtain this symmetry as a
graph by associating nodes with individual channels and edges with the filters, where
a single edge’s features correspond to the flattened weights in a zero-padded filter to
make all edge features the same size.

Learning over Neural Network Graphs

A standard GNN can be used to learn a function over NN weights with the graph
constructed as above. However, not all GNNs incorporate edge features. Kofinas et al.
(2024) propose two architectures, one extending the Principal Neighborhood Aggregation
network (PNA) (Corso et al., 2020) with edge updates, and another a slightly updated
version of a Relational Transformer (Diao and Loynd, 2023).

PNA (Corso et al., 2020) builds a message-passing scheme by combining various
aggregators and scalers to obtain the aggregation operation

⊕
=

 I
S(D, α = 1)

S(D, α = −1)

⊗


mean
std
max
min

 (5.3)

where

S(d, α) =

(
log(d + 1)

δ

)α

(5.4)

scales the messages to reduce the effect of exponential changes in the messages. Updates
then follow typical message-passing as in Equation 5.1, including edge features. The
original formulation does not include edge updates, but Kofinas et al. (2024) add
an update mechanism as in Equation 5.2, as well as feature-wise linear modulation
(Brockschmidt, 2020) based on the edge features.

The Relational Transformer (Diao and Loynd, 2023) is an extension of the traditional
Transformer (Vaswani et al., 2017) to graphs with edge features. Node and edge updates
follow the typical message-passing operations in Equations 5.1, 5.2. Unlike typical
attention where QKV vectors are obtained through node features alone, Diao and
Loynd (2023) construct the QKV vectors by concatenating node and edge features; i.e.

qij = [ni, eij]WQ kij = [ni, eij]WK vij = [ni, eij]WV (5.5)
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5. Weight-Space Learning

where each weight matrix has two components, one for edges and one for nodes to
obtain

qij =
(

niW
Q
N + eijW

Q
E

)
kij =

(
niWK

N + eijWK
E

)
vij =

(
niWV

N + eijWV
E

)
. (5.6)

The graph can be taken to be fully-connected, ignoring the original structure, but the
architecture can be adapted to other forms of connectivity just by changing which
nodes and edges each update is conditioned on.

5.2. Weight-Space Generative Models

One of the earliest approaches to using a neural network to learn a generative model
in weight-space is the Bayesian Hypernetworks of Krueger et al. (2018). A Bayesian
hypernetwork converts noise to a sample weight θ from the approximate posterior q(θ).
Making the hypernetwork invertible makes it possible to compute the log-determinant
of its inverse Jacobian, similar to a normalizing flow. The hypernetwork and the base
network can then be trained using backpropagation as a single model, where the
hypernetwork outputs weights and the primary network is used to evaluate the “true”
likelihood in a differentiable way.

Although learning a generative model only with access to a likelihood function is
still a very active research area (e.g. works such as (Tong et al., 2023)), simulation-free
regression objectives such as score/flow-matching have seen increasing interest, as
they are cheaper to optimize and can avoid certain failure modes of likelihood-based
objectives such as mode-seeking. This interest has also led to various applications of
such methods in weight-space.

Using the denoising diffusion objective, Peebles et al. (2022) train a GPT-2 model
(Radford et al., 2019) (omitting causal masking) over neural network weights, where
each token is a vector of weights. The model, named G.pt, is trained using checkpoints
from a large number of training runs augmented with permutations to obtain different
representations of the same function. The model can then also be “prompted” for
specific losses and succeeds at generating weights that correlate with the prompted
losses.

In an alternative approach, Schürholt, Mahoney, et al. (2024) aim to train an au-
toencoder that learns to map neural network weights to a lower-dimensional latent
space, which can then facilitate various downstream tasks including generation. Each
complete weight vector is tokenized and split into chunks, and each chunk has a sepa-
rate latent representation. New weights are then sampled by fitting a kernel density
estimator around the embeddings of the weights given as a prompt. The samples can

27



5. Weight-Space Learning

then be iteratively refined by using the best samples as the new prompt and repeating
this procedure.
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6. Building Flows in Weight-Space

We now bring the preceding background together and describe how we can build flows
in weight-space. We propose three alternative formulations based on how the scaling
symmetries are handled: first a Euclidean flow defined in weight-space directly, and
then the Normalized and Geometric flows with the weights normalized to remove the
scaling symmetries, differing on whether the vector field is also defined in Euclidean
space (Normalized flow) or on the manifold of normalized weights (Geometric flow).
We conclude by describing by how we train and sample from our flows.

6.1. Training With and Without Samples

Although simulation-free methods to train generative models with score/flow-matching
objectives only given access to an unnormalized density function exist (Akhound-
Sadegh et al., 2024), we train our models on samples obtained using typical gradient-
based optimization of neural networks. This is an easier setup and allows us to measure
the impact of various design choices more clearly, and potentially also benefit from
publicly available datasets of neural network weights (Schürholt, Taskiran, et al., 2022;
Peebles et al., 2022). Thus to train our flow models, we independently train a number
of neural networks on the base task and intermittently save the weights along each
optimization trajectory, discarding the initial steps based on validation loss.

6.2. Flows with Different Geometries

The first step in designing a flow is to determine the space our data lies in. We propose
three different approaches with different geometric properties, illustrated in Figure
6.1: first a Euclidean flow operating directly over the trained weights, and then two
different methods operating with the normalized weights as described in Section 4
following the process of (Pittorino et al., 2022). The last two methods further differ on
whether the vector space is also over these normalized weights or not.
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6. Building Flows in Weight-Space

Figure 6.1.: Flows with different geometric structures. Left: Euclidean flow defined
over in weight-space without modifying the weights. Center: Normalized
flow after removing scaling symmetries, with the vector field defined as in
Euclidean space. Right: Geometric flow, with the vector field defined over
the particular geometry as well.

6.2.1. Euclidean Flow

Our first method we call the Euclidean flow is defined in Euclidean space, and the
trained weights are used directly, without any transformations except permutation
alignment (re-basin) to a common reference. Following the presentation in Section 3.2,
we define the ground truth vector field as x1 − x0. Such a flow can be straightforwardly
applied to any neural network, but ignores the scaling symmetries resulting from
activations such as ReLU.

6.2.2. Normalized Flow

A simple modification to the Euclidean flow above is to first apply the normalization
procedure of (Pittorino et al., 2022) as shown in Figure 6.2. For ReLU networks, we
normalize the incoming weight vector and bias of each intermediate neuron, and scale
the outgoing weight vector up by the same normalization factor to preserve the function
being computed by the neural network. Since there is no such symmetry for the last
layer, we normalize the entire last layer weights for a classification network as that
would preserve the output class.

This procedure embeds neural network weights in a product geometry. Each inter-
mediate neuron’s incoming weight vector, and the last layer in its entirety, now lie on
unit hyperspheres of different dimensions. The bias vectors have no such structure
and we still treat them as Euclidean vectors. Our Normalized flow works with source
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6. Building Flows in Weight-Space

Figure 6.2.: Removing scaling symmetries from ReLU networks. Each intermediate
neuron lies on a unit hypersphere, as well as the last layer as a whole.
Bias vectors are also rescaled to preserve the neural network’s function but
remain Euclidean vectors.

and target distributions on this product geometry, but the vector field is still defined
in Euclidean space; i.e. inside the hyperspheres for neurons and in Euclidean space
for biases. This is an intermediate step between the previous Euclidean flow and the
Geometric flow we will describe next.

6.2.3. Geometric Flow

Since hyperspheres, as well as the Euclidean space and a product of Riemannian
manifolds, are Riemannian manifolds, we can model vector fields over them us-
ing the framework of Riemannian flow matching (Chen and Lipman, 2023) (Section
3.3). For the bias vectors in Euclidean space, we again define ut := x1 − x0 and
xt = tx1 + (1 − t)x0. For intermediate neurons and the last layer on different hyper-
spheres, we have xt = expx0

(t logx0
x1) and ut = logxt

(x1)/(1 − t). This formulation,
while computationally more expensive, has the added potential benefit that all inputs
including the intermediate points xt to our model will lie on this particular geometry,
reducing the effective dimensionality of the problem.

While we focus only on ReLU networks, this geometric formulation can be extended
to other non-linearities as they also induce different kinds of scaling symmetries
(Godfrey et al., 2022).
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6. Building Flows in Weight-Space

6.3. Model Architecture

For each of our three flows, we experimented with the PNA and Relational Transformer
architectures and decided to use the Relational Transformer model due to its superior
performance with fewer parameters. We thus model the vector field using a Relational
Transformer with edge updates (Diao and Loynd, 2023; Kofinas et al., 2024), and embed
the time by appending it to each node and edge feature. For an MLP as the base model,
each edge in the graph corresponds to a single weight, and nodes to individual bias
values. We project each node and edge feature to dE dimensions using an MLP, append
t to each node and edge, and run a number of node/edge update steps before projecting
the final node/edge states back to one dimension using an MLP. To distinguish nodes at
different layers, we add layer-specific learned positional embeddings to edge features.

6.4. Training

We train our models using the conditional flow matching objective (Equation 3.9),
but rather than predict the velocity ut, we predict the target point x1 and compute
the velocity during integration using the initial point x0 and intermediate point xt.
This makes training easier to analyze as the error in weight-space is more directly
informative, and we can constrain the outputs to the particular geometry for the
Normalized and Geometric flows.

Figure 6.3.: PDF of Beta(1, 2). We
sample t ∼ Beta(1, 2)
rather than uniformly
when training our flow
model.

As prior distributions p0, we use isotropic Gaus-
sian distributions of different variances, ensuring
that the prior distribution is the same as the distri-
bution used to initialize the weights while training
the base model, although this is not a strict re-
quirement and our flow models can be trained
with arbitrary priors. We also experiment with in-
dependent and mini-batch optimal transport cou-
plings, although especially in high-dimensions the
bias induced by the mini-batch approximation to
optimal transport can be significant (Fatras et al.,
2021).

As another modification over the standard flow
matching framework, we sample time t ∈ (0, 1)
during training not uniformly, but following
Beta(1, 2) (Figure 6.3). Since xt with smaller t are
further away from x1, estimation error increases
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for smaller time values. Sampling t ∼ Beta(1, 2) results in a larger number of parameter
updates for smaller t relative to larger t, which is a more effective distribution of
the computational budget since the predictions for larger t are closer to x1 and thus
converge in fewer steps. Importantly, sampling t ∼ Beta(1, 2) does not bias the training
process, since a prediction at a certain time is independent of the model behavior at
other times.

6.5. Sampling

To sample from our flow models, we solve the ODE (Equation 3.1) using an Euler solver
with step sizes depending on the complexity of the task, although higher-order solvers
can also be used without any modification to the rest of the setup. We also experiment
with stochastic sampling by adding noise before computing Euler updates, on the
entire trajectory or a subset of it (Karras et al., 2022).

6.5.1. Guidance

We can also guide the sampling process with loss gradients from the base task (Wang
et al., 2024; Kulytė et al., 2024; Yu et al., 2024), so that for base model f and velocity
model vθ Euler updates take the form

xt+∆t = xt + (vθ(t, xt) + λ∇xtL( f , xt))∆t (6.1)

where L( f , xt) is computed with training data points from the base task (note that
xt are neural network weights from the base task), and λ is a coefficient controlling
the strength of this guidance. If the task loss L is computed with mini-batches, this
guidance also adds an implicit stochasticity to each step of the sampling process.
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7. Experimental Results

We now evaluate our three flows and various choices on different models and datasets.
The main experimental outcomes can be summarized as follows:

• As a sanity check, we can train a flow between two Gaussian distributions, and
stochastic sampling helps capture the variance in the posterior (Section 7.1).

• On an easier task with a small model, all three flows can directly sample weights
matching and even exceeding the quality of optimized weights (Section 7.2).

• The Geometric and Normalized flows’ sample qualities plateau after a smaller
number of integration steps, indicating they learn shorter paths than the Euclidean
flow (Section 7.2).

• On a more difficult task and larger models, while individual samples perform
worse than optimized weights, Bayesian model averaging with a small number of
samples results in comparable performance (Section 7.3.1).

• A similar sample quality can also be transferred to other tasks through guiding
with task gradients during sampling (Section 7.3.3).

• Using the samples weights as initialization to train models on a different task
leads to faster convergence (Section 7.3.3).

• The Euclidean and Geometric flows successfully generalize to a larger architecture
on the same dataset, indicating they learn properties not only of the specific
architecture but the underlying task (Section 7.3.4).

• There is still expected performance gains from using larger models than the ones
we have used in our evaluations (Section 7.3.5).

We describe the detailed experimental setups in Appendix A.

7.1. Euclidean Flow Between Two Gaussians

To verify our approach of learning a flow model in weight-space, we begin our evalua-
tion the toy task of learning a flow between two Gaussian distributions. The neural
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(a) Deterministic sampling (ε = 0) (b) Stochastic sampling (ε = 0.05)

Figure 7.1.: Histograms for the means of the weights generated by a Euclidean flow
trained between two Gaussian distributions. The flow fails to capture the
variance in the target distribution with deterministic sampling, but this is
corrected by stochastic sampling with ε = 0.05.

network is a small MLP with 30 input, two output dimensions, and two hidden layers
of 16 neurons. We sample X0 ∼ p0 := N (0, I) and X1 ∼ p1 := N (1, I), and train our
Euclidean flow to map p0 to p1 with independent coupling q(x0, x1) = p0(x0)p1(x1).
This is a relatively simpler task than learning over actual weights since each dimension
of the weight vectors is sampled independently.

Figure 7.1 shows histograms of the means of the weights sampled from the flow with
100 Euler steps, and either deterministic or stochastic (ε = 0.05) sampling. Independent
of the sampling method used, the flow covers the high-density center of the target
distribution well, but the weights sampled deterministically fail to capture the variance
in the target distribution. Stochastic sampling however appears to correct for this
over-saturation and leads to more diverse samples. Overall, these results validates the
feasibility of learning a flow model in weight-space using graph neural networks, and
we move on to tasks involving actual learned weights.

7.2. Classification with a Small Model

After the toy Gaussian example, we move on to a relatively simple classification task to
demonstrate that our flows can generate high-quality samples and compare the various
design choices outlined in Chapter 6. The target model is an MLP with two hidden
layers of 16 dimensions each and ReLU activations, on the binary classification task
of the UCI Wisconsin Breast Cancer Diagnostic dataset (Street et al., 1993). We train
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(a) Unaligned (0.244 ± 0.009) (b) Aligned (0.070 ± 0.001)

Figure 7.2.: Loss barriers for 250 weights across different optimization trajectories
(mean and standard deviations in parentheses) on the UCI Wisconsin Breast
Cancer Diagnostics dataset. Aligning all weights to a single reference
significantly reduces the loss barriers between the weights.

Flow Accuracy Loss

Euclidean 0.998 ± 0.006 0.101 ± 0.050
Euclidean (aligned) 0.998 ± 0.006 0.070 ± 0.040
Euclidean (aligned + OT) 0.993 ± 0.010 0.053 ± 0.028

Normalized 0.993 ± 0.009 0.027 ± 0.014
Normalized (aligned) 0.989 ± 0.011 0.030 ± 0.015
Normalized (aligned + OT) 0.988 ± 0.018 0.044 ± 0.047

Geometric 0.992 ± 0.011 0.019 ± 0.009
Geometric (aligned) 0.993 ± 0.001 0.018 ± 0.001
Geometric (aligned + OT) 0.991 ± 0.011 0.020 ± 0.012

Target 0.992 ± 0.010 0.048 ± 0.032

Table 7.1.: Test accuracy and loss (± std) of the samples generated by flows with
different design choices. Euclidean and Normalized flows result in the most
accurate weights, with Normalized flow generating lower-loss weights.

all flows on the same dataset consisting of weights sampled from 100 independent
trajectories optimized with Adam (Kingma and Ba, 2017).
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In addition to the availability of a large number of trained weights, this setup
represents a preferable scenario in the sense that aligning all weights to a single
reference eliminates the loss barriers between them to a large extent. Figure 7.2
shows the pair-wise loss barriers (midpoint of the linear interpolation) before and
after alignment for 250 randomly sampled weights from the set of Adam-optimized
weights. The loss barriers are reduced considerably (from an average of 0.244 to 0.07)
which supports the linear mode connectivity hypothesis for this setup. This should
presumably make it easier to approximate the posterior distribution, as in the extreme
case of zero-loss barriers between all pairs of weights and assuming they capture all
the modes, the posterior would be convex.

Sample Quality. Table 7.1 compares the predictive quality of the samples generated
by different flows with or without alignment and mini-batch OT couplings. All flows
can generate samples with almost perfect accuracy, matching or exceeding (although not
significantly) the performance of Adam-optimized weights. Noticeably, the Geometric
flow generates samples with lower loss than the Normalized flow, highlighting the
benefit of modeling the vector field over the product geometry of normalized weights
as well. Aligning all the weights to a reference before training, and training the flow
with mini-batch OT couplings both decrease the loss of the generated samples for the
Euclidean flow, but the same effect is not visible for the Normalized and Geometric
flows.

Number of Integration Steps & Guidance. Figure 7.3 displays how the predictive
performance of generated weights changes with the number of Euler steps performed
to integrate the ODE. The main outcomes are:

• Normalized and Geometric flows learn straighter paths compared to the Eu-
clidean flow, apparent from the samples from the Euclidean flow showing a more
significant improvement in quality going from 8 to 64 Euler steps.

• For all three flows, guiding the integration with task gradients improves sample
quality, but increasing the number of integration does not appear to significantly
increase the effect of guidance.

7.3. MNIST Classification

We now move on to a harder classification task and larger models to evaluate different
use cases of a weight-space flow. We start with the MNIST dataset, and an MLP with a
single hidden layer of 10 neurons and ReLU activations, following the setup used in
(Peebles et al., 2022), but we sample a smaller dataset over 20 independent optimization
trajectories.
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Figure 7.3.: Comparing the quality of the generated weights with Adam-optimized
weights. Weights generated by the Euclidean and Normalized flows have
higher accuracy and lower loss than Adam-optimized weights, while the
Geometric flow generated less accurate weights. Guidance during sampling
improves sample quality.

This corresponds to a harder task than the UCI classification of the previous section
for several reasons. The base MLP has around an order-of-magnitude of more parame-
ters (7,960 rather than 802 parameters) while our GNN is in fact smaller. Moreover, the
optimized weights do not reach perfect accuracy unlike in the UCI classification task.

7.3.1. Sample Quality and Diversity

Table 7.2 shows the predictive performance and functional diversity of the weights
generated by different kinds of flows trained on aligned weights. Functional diversity
is a desirable property of a weight-space generative model, as more diverse weights
could correct for each other’s errors and make model averaging more effective. We
focus on functional rather than parametric diversity since even if two neural networks
do not have identical parameters, they could be computing the same function, and
thus provide no benefit for model averaging. To measure the functional diversity in a
set of neural networks, we compute the average pairwise Jensen-Shannon divergence
(JSD) (Endres and Schindelin, 2003; Mishtal and Arel, 2012) between the output (class
probabilities) distributions of neural networks in the set. For a set of weights S = {θi}N

i=1
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Flow Accuracy Loss Diversity

Euclidean 0.737 ± 0.085 0.814 ± 0.286 0.00102 ± 0.00114
Euclidean (OT) 0.757 ± 0.077 0.753 ± 0.245 0.00085 ± 0.00094

Normalized 0.753 ± 0.074 1.537 ± 0.046 0.00086 ± 0.00055
Normalized (OT) 0.706 ± 0.078 1.608 ± 0.047 0.00117 ± 0.00074

Geometric 0.737 ± 0.070 1.457 ± 0.040 0.00073 ± 0.00049
Geometric (OT) 0.786 ± 0.064 1.443 ± 0.046 0.00093 ± 0.00063

Target 0.933 ± 0.009 0.231 ± 0.027 0.00002 ± 0.00001

Table 7.2.: Test accuracy, loss (± std), and diversity of the samples generated by flows
for classification on the MNIST dataset after alignment. Geometric flow
with OT couplings results in the best-performing samples, but most flows
are within one standard deviation of each other.

Figure 7.4.: Comparing the quality of the generated weights with SGD-optimized
weights. After a very small number of steps, sampled weights are com-
parable in performance with SGD-optimized weights but plateau after
around 64 steps. Geometric and Normalized flows again appear to lead to
straighter paths.

and model f , we fix input points {xi}K
i=1 and compute

Diversity(S) :=
1

N2 ∑
i,j

JSD
(
{ f (θi, xl)}K

l=1, { f (θj, xl)}K
l=1

)
(7.1)
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with JSD defined as

JSD(A, B) :=
1
2 ∑

x∈A
pA(x) log

(
2pA(x)

pA(x) + pB(x)

)
+

1
2 ∑

x∈B
pB(x) log

(
2pB(x)

pA(x) + pB(x)

)
(7.2)

and we fit kernel density estimators to both sets to estimate the densities pA and pB.
Table 7.2 displays the test accuracy, loss, and diversity (Equation 7.1) of the samples

generated with each flow, trained after alignment, and with independent as well as
mini-batch OT couplings. While the accuracy of sampled weights are generally within
one standard deviation of each other, the Geometric flow with OT couplings results in
the highest accuracy. However, unlike the previous UCI classification task, the sampled
weights individually perform worse than optimized weights.

The output distributions of the generated weights shows higher diversity than SGD-
optimized weights, although this is also influenced by the generated weights performing
worse. Nevertheless, as we will observe in the next chapter, this diversity makes model
averaging more effective and considerably increases the predictive performance of
generated weights.

Figure 7.4 shows how sample quality varies with the number of steps for our three
flows trained with independent couplings, and sampled with and without guidance.
Unlike the previous task where the sampled weights were directly of almost perfect
accuracy, the sample quality for MNIST flows plateau after a certain number of steps,
and SGD-optimized weights show superior performance. Similar to the results on the
UCI classification task, Normalized and Geometric flows also show less improvement
with a larger number of steps, indicating that the flows have learned straighter paths
then the Euclidean flow.

7.3.2. Posterior Predictive Performance

We now evaluate the predictive performance of the sampled weights after Bayesian
model averaging; i.e. for each flow, we sample from its push-forward distribution
p̂1(θ) and compute a Monte Carlo estimate for the expectation Ep̂1(θ) [p(y|x, θ)], as in
Equation 2.1. Figure 7.5 displays the accuracy of predictions averaged over increasing
numbers of samples from p̂1, comparing our three flows as well as independent and
mini-batch OT couplings. With independent couplings, the Euclidean flow results in
the highest accuracies, noticeably reaching the accuracy of individual SGD-optimized
weights.

Training the flows with OT couplings improves the predictive performance of all three
after model averaging. The improvement for the Geometric flow is more significant
than that of the Euclidean and Normalized flows, moving from ∼ 87% to 94%. This
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(a) Independent Couplings (b) OT Couplings

Figure 7.5.: Accuracy of the predictions averaged over various numbers of samples
from the flows’ push-forward distributions, comparing independent and
OT couplings. The Euclidean flow shows the highest accuracy, reaching
the accuracy of individual SGD-optimized weights.

Flow Accuracy Loss

Adam-optimized 0.908 ± 0.003 0.334 ± 0.008

With Guidance
Euclidean 0.754 ± 0.082 0.764 ± 0.252
Normalized 0.724 ± 0.081 1.543 ± 0.045
Geometric 0.730 ± 0.067 1.470 ± 0.043

No guidance 0.080 ± 0.030 9.601 ± 1.402

Table 7.3.: Predictive performance of samples from the MNIST flows with guidance
(λ = 0.1) from Fashion-MNIST task gradients. Although the base model
(Adam) accuracy is lower than for MNIST, samples obtained with guidance
reach an accuracy similar to that of the samples obtained without guidance
on MNIST, indicating that a flow trained on one dataset can be transferred
to another dataset via guidance.

supports the results in Table 7.2 that the Geometric flow benefits the most from OT
couplings.
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7.3.3. Transferability to Different Tasks

As a potential use case of our flows, we now evaluate the effectiveness of a flow trained
on weights from a dataset (e.g. MNIST) different than the target dataset (e.g. Fashion-
MNIST) using the same architecture, although the GNNs we model our flow with can
be applied to architectures other than the one they were trained on. There are three
main ways we can evaluate this performance:

1. Evaluate the samples directly.

2. Guide sampling with gradients from the target task.

3. Initialize model with sampled weights and train on the target dataset.

First, Table 7.3 shows the performance (on Fashion-MNIST) of samples from flows
trained with MNIST weights but sampled with guidance from the Fashion-MNIST task
gradients over 512 Euler steps. First, expectedly, the last row of the table shows that
samples obtained directly from the MNIST flows without guidance achieve an average
accuracy of 8%, which is not better than random guessing. However, although the
accuracy of the base model after optimization with Adam is slightly lower for Fashion-
MNIST compared to MNIST, samples from all three flows achieve a test accuracy of
at least 72%, which is similar performance of the samples obtained without guidance
from the same flows on MNIST.

These results highlight that even though the flows are trained on weights obtained
over one dataset, they can capture some salient features shared across optimization
landscapes, and can be adapted to different datasets without having to train them from
scratch, in this case only by guiding the sampling process with task gradients which is
significantly cheaper than training the entire flow from scratch.

Next, we evaluate if the samples from the MNIST flows obtained without any
guidance provide a more effective initialization scheme then random initialization for a
model trained on Fashion-MNIST. Figure 7.6 displays the test accuracy and loss values
during training when the model is initialized from an isotropic Gaussian or with our
flow trained on MNIST weights, averaged over five training runs. Although the curves
tend to converge towards similar values, the model initialized with the weights from
the flow converges faster. This indicates that using our flows for learned initialization
on similar tasks can lead to faster convergence and thus more efficient training.

7.3.4. Transferability to Different Architectures

Since a GNN is by design not limited to a certain graph structure, our weight-space
flows can also be applied to architectures different than the one they were trained on.
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(a) Test Accuracy (b) Test Loss

Figure 7.6.: Optimization trajectories of Adam on Fashion-MNIST with initial
weights sampled from an isotropic Gaussian and the Euclidean flow
trained on MNIST weights. While the curves tend to converge towards
similar values, the learned initialization converges faster.

Flow Accuracy Loss

Euclidean 0.826 ± 0.076 0.830 ± 0.281
Euclidean (w/ guidance) 0.842 ± 0.079 0.796 ± 0.337

Geometric 0.890 ± 0.030 1.030 ± 0.038
Geometric (w/ guidance) 0.886 ± 0.033 1.031 ± 0.037

Normalized 0.203 ± 0.122 2.652 ± 0.667
Normalized (w/ guidance) 0.184 ± 0.083 2.776 ± 0.575

Table 7.4.: Generalization of flows trained on MNIST MLPs to MLPs with different
architectures. Euclidean and Geometric flows can generalize to an archi-
tecture with a wider hidden layer without requiring guidance while the
Normalized flow fails to do so even with guidance.

To evaluate this, we use the flow models from the previous chapters trained on the
weights of an MLP with 10 hidden neurons and evaluate them using a larger MLP
with 32 hidden neurons. Table 7.4 shows the resulting test accuracies and losses on
MNIST. In particular the Euclidean and Geometric flows output samples with even
higher accuracy than they did for the smaller MLP. This is not surprising as the larger
model is expected to have better performance than the smaller model, but shows that
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(a) Test Accuracy (b) Test Loss

Figure 7.7.: Sample predictive performance with increasing model size, characterized
by the node/edge feature dimension dE. The upward trajectory in Figure
7.7a and the downwards trajectory in Figure 7.7b implies that there are still
performance gains to be achieved by using larger models.

the flows learn to approximate the posterior for not just one architecture, but for the
underlying task more generally.

7.3.5. Model Size Scaling

We conclude our evaluations by measuring if there is performance gains to be expected
by using larger flow models than the ones we have considered so far. We thus train
flow models with different node/edge feature dimensions (dE) for the same number
of iterations, and evaluate their sample qualities. The largest model, with 32 dimen-
sional features, has approximately 146K parameters while the smallest model with 8
dimensional features has approximately 15K parameters.

Figure 7.7 displays the quality of the generated samples for flow models with 8, 16,
and 32 dimensional features. While the Geometric flow achieves the most accurate
samples for each model size, the upwards trajectories for the test accuracies and the
downwards trajectories for the test losses common to all three kinds of flows indicate
that there are performance gains to be expected by using larger models.

Considering that the literature on weight-space generative models often uses models
with number of parameters on the order of tens or even hundreds of millions, the
largest models in Figure 7.7 are relatively small, and still manage to achieve high
sample quality.
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8. Conclusion

Deep generative models, applied to domains such as images (Esser et al., 2024) and
molecules (Abramson et al., 2024) to great effect, often take into account various symme-
tries in their data such as translation-invariance in images or rotational symmetries for
molecules. Generative models applied to other neural networks’ weights on the other
hand, have so far only considered the permutation symmetries of neural networks, and
not the scaling symmetries arising from the use of non-linear activations such as ReLU.
We have thus attempted to address this gap, and showed that utilizing this geometric
structure of neural networks in addition to the permutation symmetries helps build
more effective generative models of neural network weights.

Using the flow matching framework, we have constructed three different kinds of
flows with different ways of handling this geometry, and evaluated them in various use
cases such as transfer learning, learned initialization, and Bayesian model averaging.
Our results have demonstrated that often the fully geometric flow results in better
performance, and that there are still gains to be expected by further scaling up our
models.

8.1. Future Directions

While we have demonstrated that generative models in weight-space trained via the flow
matching objective can generate high-quality samples and that taking into account the
geometry of the neural network weights can make such flows more effective, applying
modern generative models to neural network weights is still an active research area with
many fruitful potential future directions and we outline a list of potential directions for
future work in this section.

8.1.1. More Fine-Grained Geometric Considerations

Our flows so far are built for MLPs and only take into account the permutation
symmetries between subsequent layers and scaling symmetries resulting from the
use of ReLU activations. However, as outlined in previous work (Kofinas et al., 2024;
Lim, Maron, et al., 2023), different architectural choices such as convolutions, residual
connections, or transformer blocks induce different kinds of symmetries that can be
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captured by constructing the neural graphs accordingly. The same GNN architectures,
such as the Relational Transformer we have used, can then be used for learning tasks
over these graphs.

Different activation functions also induce different symmetries (Godfrey et al., 2022)
which can be used to embed neural networks into different manifolds, similar to our
embedding of ReLU MLPs on a product of hyperspheres and Euclidean space following
(Pittorino et al., 2022). Since generative modeling frameworks such as flow matching
can readily be applied to different manifolds (Chen and Lipman, 2023), including the
use of data-dependent metrics (Kapusniak et al., 2024) rather than explicitly formulating
a manifold, extending our flow models to different kinds of symmetries represents
another potentially valuable line of work.

Another future direction related to symmetries in weight-space is to account for
data-dependent symmetries (Zhao, Ganev, et al., 2023) that arise from the data the
model is trained on rather than the static symmetries in the previous paragraph that
are valid for all instantiations of the same architecture. Recent work attempting to
find these symmetries in an automated way (Zhao, Dehmamy, et al., 2024) can also be
useful building blocks in this light.

Finally, certain functional constraints in neural networks such as group equivariance
are often imposed through constraints on the neural networks’ weights (Weiler, 2023).
If the base model has such constraints, accounting for them while designing the flow
as well could reduce the effective dimensionality of the problem considerably and lead
to more efficient flows.

8.1.2. Generative Modeling and Training

While each our flows is trained on a single architecture and dataset to push-forward
a single source distribution to a single target distribution, a single flow that could
potentially learn to map different source distributions (e.g. corresponding to the same
base architecture on different datasets, or different architectures on the same dataset)
could be a more directly useful method. This would essentially correspond to a setting
where the model learns to model a vector field not in weight-space, but in the space
of probability distributions. Generalizations of the flow matching framework to this
setting, such as Meta Flow Matching (Atanackovic et al., 2024) and Wasserstein Flow
Matching (Haviv et al., 2024) could be useful building blocks for such a flow, as well as
the publicly available datasets of neural network weights (Schürholt, Taskiran, et al.,
2022). This approach could lead to weight-space “foundation models” that are trained
over a diverse set of tasks and can be adapted to specific use cases by fine-tuning on a
single task. While this would be instance of meta-learning (Hospedales et al., 2022), it
would be have the added benefit of obtaining probability distributions over solutions
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rather than point estimates.
Furthermore, the requirement of sample-based training can also be relaxed by

utilizing recent work on generative modeling without samples (Vargas et al., 2023;
Akhound-Sadegh et al., 2024). In particular, iDEM (Akhound-Sadegh et al., 2024) learns
a sampler with access to the energy function and its gradient (and optionally samples
from the posterior) without having to simulate the forward and backward trajectories
of the sampling process, making it potentially useful in high-dimensional spaces such
as neural network weights.

8.1.3. Sampling and Guidance

We sample from our flows using an Euler ODE solver and perform guidance during
sampling only using the base task gradients, but the sampling phase has a richer design
space that can be utilized to obtain faster and more controllable flows. To begin with,
higher-order ODE solvers can be used to reduce the approximation error to the learned
vector field at the cost of longer sampling times. Distillation methods such as Flow
Map Matching (Boffi et al., 2024) and Consistency Flow Matching (L. Yang et al., 2024)
can be utilized to instead speed up the sampling process.

Using a generative modeling framework such as flow matching also enables guidance
methods beyond using task gradients. First, any differentiable objective can be used in
place of the task loss to guide the sampling process. Performing classifier-free guidance
is also possible for flow models (Zheng et al., 2023), to instead condition the sampling
process on a variable such as the desired loss, as also done in weight-space with
diffusion models in Peebles et al. (2022). Finally an alternative conditioning approach
in flow matching is to differentiate through the ODE sampling process to optimize
the initial point x0 so that the solution x1 minimizes a loss function (Ben-Hamu et al.,
2024). This and future work for controllable sampling in flow models can be adapted
neural network weights to condition flows on desired quantities or objectives such as
adversarial robustness.
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Implementation Details and Computational Resources

Our flows were primarily implemented in PyTorch (Paszke et al., 2019), building on the
weight-space GNN and graph construction implementation of (Kofinas et al., 2024) and
with our custom flow matching implementation utilizing parts of the torchcfm package
of (Tong et al., 2023). We have implemented a custom Euler solver to integrate our
ODEs and used the geoopt package (Kochurov et al., 2020) for geometric operations.

Throughout the experiments, we train all our models using a combination of NVIDIA
A100 an H100 GPUs, with each model being trained on a single GPU. The training
times range from around 6 hours for the smaller Euclidean flows to approximately
40 hours for the larger Geometric flows, although our implementation was not fully
optimized for efficiency.

Flow Between Gaussians (Section 7.1)

Data

• p0 = N (0, I), p1 = N (1, I).

• The model is an MLP with dimensions 30 - 16 - 16 - 2 and ReLU activations.

Flow Architecture

• Relational Transformer (Diao and Loynd, 2023; Kofinas et al., 2024) with 5 layers
and dE = 32, GeLU activations (Hendrycks and Gimpel, 2023), one attention
head.

Flow/Training

• Independent coupling, t ∼ Beta(1, 2), Gaussian probability path with σ = 0.001,
x1 prediction.

• Trained for 20,000 iterations with batch size 16, using the Adam optimizer with
initial learning rate 0.001.

48



A. Experimental Setups

UCI Classification (Section 7.2)

Data

• p0 = N (0, 0.1I). To obtain samples from p1, we sample 100 models from p0 and
train each independently for 50 epochs with Adam. We ignore the first 10 epochs,
and record one sample every four iterations after that.

• We use the same MLP architecture as the Gaussian experiments.

Flow Architecture

• Relational Transformer (Diao and Loynd, 2023; Kofinas et al., 2024) with 5 layers
and dE = 64, GeLU activations (Hendrycks and Gimpel, 2023), one attention
head.

Flow/Training

• t ∼ Beta(1, 2), Gaussian probability path with σ = 0.0001, x1 prediction.

• Trained for 250,000 iterations with batch size 32, using the Adam optimizer with
initial learning rate 0.001.

MNIST Classification (Section 7.3)

Data

• p0 = N (0, 0.1I). For the target samples, we independently train 50 models for
25 epochs using SGD with momentum 0.9, learning rate 0.1, and weight decay
0.00001. We collect one sample every 10 iterations, discarding the first 5 epochs.

• The base model is an MLP with 784 input and 10 output dimensions, and one
hidden layer of 10 units.

Flow Architecture

• Relational Transformer (Diao and Loynd, 2023; Kofinas et al., 2024) with 5 layers
and dE = 32, GeLU activations (Hendrycks and Gimpel, 2023), one attention
head.

49



A. Experimental Setups

Flow/Training

• t ∼ Beta(1, 2), Gaussian probability path with σ = 0.00001, x1 prediction.

• Trained for 100, 000 iterations with batch size 8.
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