examples.separability.py¶
Separability Analysis using RINGS Framework
This script demonstrates how to: 1. Use the basic comparators (KS Test and Wilcoxon Test) 2. Apply the SeparabilityFunctor to compare multiple distributions 3. Visualize and interpret separability results
- Usage (from root directory):
python -m examples.separability –comparator ks –alpha 0.01
- For more options:
python -m examples.separability –help
Have your own performance distributions and want to execute a separability analysis? Replace the distribution in create_sample_distributions function with your own and run the script.
- examples.separability.get_available_comparators()[source]¶
Return a list of available comparators with descriptions.
- Returns:
Mapping from comparator name to description
- Return type:
dict
- examples.separability.create_comparator(name)[source]¶
Create a comparator based on the given name.
- Parameters:
name (str) – Name of the comparator
- Returns:
A comparator object that can compare distributions
- Return type:
Comparator
- examples.separability.create_sample_distributions(seed=42)[source]¶
Create sample distributions with different characteristics.
- Parameters:
seed (int) – Random seed for reproducibility
- Returns:
Dictionary of named distributions
- Return type:
dict
- examples.separability.basic_comparator_example(seed=42)[source]¶
Run a basic example using comparators directly.
- Parameters:
seed (int) – Random seed for reproducibility
- examples.separability.run_separability_analysis(comparator_name, alpha, n_permutations, n_jobs, seed)[source]¶
Run the separability analysis using the specified comparator.
- Parameters:
comparator_name (str) – Name of the comparator to use
alpha (float) – Significance level for statistical tests
n_permutations (int) – Number of permutations for the test
n_jobs (int) – Number of parallel jobs
seed (int) – Random seed for reproducibility
- Returns:
(results_df, results_list) containing the analysis results
- Return type:
tuple
- examples.separability.print_results_summary(results_df, results_list, comparator_name)[source]¶
Print a summary of the results.
- Parameters:
results_df – Results as DataFrame
results_list – Results as list of dictionaries
comparator_name (str) – Name of the comparator used
- examples.separability.main()[source]¶
Main function to run the separability analysis. User inputs are handled via command line arguments:
–comparator: Name of the comparator to use (default: ks) –alpha: Significance level for statistical tests (default: 0.01) –seed: Random seed for reproducibility (default: 42) –permutations: Number of permutations for the test (default: 1000) –n-jobs: Number of parallel jobs (-1 for all cores, default: 1) –skip-basic: Include –skip-basic argument to skip basic example, otherwise included by default