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Abstract

In the recent years topological data analysis (TDA) has found multiple applications
in the field of deep learning and is being increasingly adopted for versatile tasks like
reconstruction or graph neural networks. Surprisingly, many models can benefit from
addition of topological supervision even if this is performed only as regularization
routine. Neural radiance fields (NeRFs) are novel family of models, which aim to
represent 3D scene by learning intensity and color information of a point in 3D space
given location and angle of view. Original approach despite its expressiveness had
several drawbacks, which were continuously addressed by recent papers. The way
neural radiance fields process data collected from rays cast through the scene leaves a
lot of space of application of TDA, which has not yet been elaborated by researchers.
In this thesis we attempt to unify NeRFs with TDA and explore different ways of how
this might be performed, possible constraints and effects on training and inference
process. We also implement a novel Betti Curve Transform deep learning layer, which
might be used in an end-to-end fashion on top of persistence diagram construction.
Apart from this we implemented such algorithms as UnionFind and Betti Curve
Alignment, which allow construction and comparison of Betti Curves. Our studies
confirmed that this novel regularization term might be useful in many deep learning
tasks. Additionaly we experimented with normalizing flows models endowed with
topological features, which have proven to be helpful in capturing overall topology
of the generated samples.
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Kurzfassung

In letzten Jahren topologische Daten Analyse (topological data analysis TDA) wurde
aktiv angewendet im Gebiet von Deep Learning und wird zunehmend fiir verschie-
dene Aufgaben wie die Rekonstruktion oder die Nutzung in Graph-Neuronalen
Netzwerken eingesetzt. Erstaunlicherweise konnten viele Modelle davon profitieren,
wenn man sie mit topologischer Begleitung ausriistet, selbst wenn es sich lediglich
um Regularisierung handelt. Neural Radience Fields (NeRFs) ist eine mafischnei-
dende Familie von Modellen, die sich als Ziel setzen, 3D Szene durch Erlernen von
Intensitdts- und Farbinformationen eines Punktes in 3D-Raum gegeben Position und
Blickwinkel. Ursprunglicher Ansatz hatte einige Nachteile trotz seiner Kapazitet,
die wurden dennoch in neusten Arbeiten angegangen. Die Art und Weise, wie die
Strahlen, die durch den Raum geschofien werden, von NeRF verarbeitet werden
bietet vielseitige Moglichkeiten von Topologie Anwendung, die noch nicht einge-
hend von Forschern erarbeitet worden sind. In dieser Masterarbeit versuchen wir
NeRFs mit TDA vereinen und erforschen daher wie man es erziehlen kann, wobei
wir auch mogliche Beschrankungen und Wirkungen von Schullung und Inferenz be-
riicksichtigen. Auflerdem implementieren wir eine neuartige Deep-Learning-Schicht
namens Betti Curve Transform, die auf persistente Diagramme in einer End-to-End-
Architektur angewendet werden kann.Dartiiber hinaus haben wir solche Algorithmen
wie UnionFind und Betti Kurve Zusammenstellung umgesetzt, was die Berechnung
und Gegenpberstellung von Kurven ermoglicht. Unsere Ergebnisse haben bestitigt,
dass diese neue Regularisierung in vielen Deep-Learning-Aufgaben niitzlich sein
konnte. Zuséatzlich haben wir mit Normalizing-Flow-Modellen experimentiert, die mit
topologischen Merkmalen ausgestattet sind. Diese haben sich als hilfreich erwiesen,
um die Gesamt-Topologie der generierten Proben zu erfassen.
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1 Introduction

In the recent years topological methods have been actively finding their way into the
realm of machine learning, expanding the boundaries of the methodology employed.
As a relatively young field, topological data analysis relies on the concept of persistent
diagram, which was predated by Morse complexes [1, 2] and formally introduced in
the early 2000s by Herbert Edelsbrunner et.al.[3]. Serving as a bridge this object paved
the way for different computational methods revolving around this tool. Indeed,
topology has always been striving to describe structure of spaces and yet has always
been lacking application to real world problems, always remaining out of scope and
nevertheless posing great interest for applied scientists.

As far as deep learning is concerned, representation learning plays a crucial role in
systematizing knowledge about the domain, as it helps to obtain meaningful latent
code, comprising the most important information about an object. Topology helped to
propagate shape information contained in the original data to latent representations
and thus proved to be essential in the field of neural networks. TDA finds application
in multiple tasks, ranging from reconstruction and segmentation [4] to graph neural
networks [5].

Despite high value of practical application, computational topology is still being a
relatively novel field. As such, many of the scientific computing packages can not be
used for direct integration into deep learning pipeline, as well as many topological
metrics, kernels and models are lacking differentiable implementations allowing for
end-to-end application in deep learning tasks. Apart from this TDA has been found
to beneficial for numerous setups, where structure of data is of concern. [4, 6]

In 2020 neural radiance field (NeRF) [7] model altered the landscape of implicit
3D modelling [8, 9] from a set of 2D views introducing a novel methodology and
shaping a new active field of research, which spans over versatile improvements over
the original concept. While being expressive in the core, initial model suffered from
multiple issues, for instance, dynamic illumination, occluded objects [10] over views
or insufficient number of views for training process. Another problem posed by
NeRF was computational efficiency and capability for acting as zero-shot model [11].
Among recent advances involving numerous techniques and approaches, topology
has been employed only implicitly.

In this thesis we approach a problem of endowing a classical NeRF architecture with
topological supervision and experiment extensively with possible ways of achieving
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this goal. Our focus is set on accelerating convergence of the original model and
proving that topological methods can be applied in this novel field to approach this
goal.

We structure our work in a coherent and logical way by starting from outlining
basic theoretical foundations spanning elements of algebraic and computational
topology and specifi architecture employed along the way. We then proceed with
giving a brief outlook on related works in the areas of topological machine learning,
implicit 3D reconstruction based on radiance fields and probabilistic models. In the
methods chapter we explain, how we are going to approach reconstruction problem
and finally move to basic experiments and main results, offering a deep look into our
findings and insights for the future works.




2 Data

In this chapter, a brief discussion will be provided on the data that will be used to
benchmark our algorithms. Since a novel differentiable implementation of a topo-
logical term based on Betti Curves has been introduced in this work, benchmarking
of some of the algorithms on basic topological toy datasets will also be included.
Information on these datasets will not be included here but will be mentioned in
chapter6.

2.1 Spheres

Spheres mentioned in paper [12] is a benchmark dataset, used to validate results
in topological autoencoder experiments section 6.2.1. It is represented by ten 101-
dimensional spheres located inside a bigger sphere. This dataset is used for testing
models for several purposes. Firstly it is high dimensional and therefore poses a
challenge to most of machine learning algorithms, secondary it encodes important
topological information, which can be learned and visualized effectively.[12]

2.2 FashionMNIST

FashionMNIST dataset was first introduced in [13] and was used as a benchmarking
dataset for computer vision tasks. It consists of 70 000 images from fashion cata-
logue, downscaled to 28x28 pixels and featuring ten classes - t-shirts/tops, trousers,
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots.

2.3 Nerf Synthetic Dataset

Original NeRF paper was benchmarked against several datasets.[7]. One them was
collected from Blender via 3D modelling and represents some 3D objects available
from multiple views, thus allowing to compare models on large amounts of data.
This data is stored in the format of images and records, describing camera position
(rotations, affine transform and file path). Dataset was sampled uniformly to capture
multiple angles from upper hemisphere (and for some objects from whole sphere)
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Figure 2.1: Samples from FashionMNIST Dataset. Dataset represents complex vari-
aty of objects which serve as a baseline for versatile machine learning
tasks.

and then split into training and evaluation datasets with 100 of images for each and
test set with 200 samples. The images were captured at resolution of 800x800 pixels.
In our experiments they were additionally downsampled to different dimensions to
accelerate our study, specifically: 32x32, 96x96, 128x128, 512x512 pixels. Dataset also
provides mask of the objects, as most of the canvas of such images is black.




2 Data

(a) (b) (©) (d)

(e) (f)

Figure 2.2: NeRF synthetic dataset example objects in full resolution. Here (a) -
chair, (b) - lego, (c) - ficus, (d) - hotdog, (e) - drum and (f) - microphone.




3 Theoretical Background

In this section, the theoretical foundations of the methodology applied throughout
the work are reviewed. The underlying concept of persistent homology and metrics
over the space of persistence pairings are discussed, followed by the artificial neural
networks employed in the research. In addition to the topological aspects of the
toolbox, focus is placed on 3D Machine Learning, specifically a thorough analysis
of the architectures and their potential applications in the realm of Topological Data
Analysis (TDA). This enabled further exploration of the reconciliation between the
two domains.

3.1 Fundamentals of Algebraic Topology

3.1.1 Simplicial and Geometric Complexes

TDA is a novel field of data analysis with the focus on topological properties of
the underlying space the dataset is sampled from. Given a finite set of points
sampled from Eucledian space one would like to reconstruct original topology of the
underlying set they originate from. This target topology might be well approximated
by discrete analogues. Let us start by introduction of the concept of an abstract
simplicial complex:

Definition 3.1.1 (Abstract Simplicial Complex). A = {A|A € X,VBC A,B€ A, A #
@}

Definition 3.1.2 (k-Skeleton of a simplex). k-Skeleton of an abstract simplicial complex
A is defined as Sky(A) = Usea card(s)<k S

The dimension of an abstract simplicial complex is defined as the highest cardinality
of the sets contained within it, minus one. The constituents of the complex are called
simplices, and since any subset of a simplex is inherently included in the complex,
it is referred to as a face of the simplex. The definition 3.1.1 of an abstract simplicial
complex is purely combinatorial and extends the concept of graphs, which can be
viewed as 2-dimensional abstract simplicial complex. However, abstract simplicial complex
go beyond this by considering not just pairs of vertices, but tuples of vertices. This is
why this structure is sometimes referred to as a hypergraph.
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Abstract simplicial complex are not dealing with any topological structure and define
a structure independent of the space, where the elements could be sampled from,
hence necessitating the notion of geometric simplicial complex.

Definition 3.1.3 (Geometric Simplicial Complex). Geometric simplicial complex K is
called a collection of sets o C IR" over a finite (or infinite) collection of points X C R",
where:

1. 3X C X such that ¢ = conv{X} and X is affine independent.
2. VtrCco,teK

3. Vo,teKonNt#0,cNtekK

Geometric simplicial complexes defined as in 3.1.3 can be viewed as a geometric
realization of an abstract simplicial complex, indeed any abstract simplicial complex can be
embedded into R"~! or equally into R?'*!, where d - dimension of a complex and n
- number of points, that the simplices span over. The last realization is possible is due
to mapping points into general linear position. A mapping from abstract simplicial
complex to its corresponding geometric realization could formally be defined as:

Definition 3.1.4 (Geometric Realization). Let A be an abstract simplicial complex and
f:V(A) — R" - injective mapping, such that f(A) - geometric simplicial complex,
then f - geometric realization of abstract simplicial complex A. We will also define
the resulf of this mapping as |A|

While being built on a fixed set of points, geometric simplicial complex might be
refined using barycentric subdivision of a geometric simplicial complex:

Definition 3.1.5 (Barymetric Subdivision). Let X = {x;}" , define a simplex c € K
- geometric simplicial complex, let be(o) = {bc;|I C 1...n,bc; = ﬁ YicrXxi} - set of

all barycenters of subsets of o, then b;(0) = {7|3X C X, X # @,bc C be(o),T =
conv{X Ubc, },card(X Ubc) = card(c)}, this procedure is performed for all simplices,
that are not faces for any other simplex.

Geometric simplicial complexes aim to describe the topology of the space the dataset
is sampled from based on the finite dataset. However these approximations might
be chosen in different manners, and a natural question arises - how to choose the
one, that is guaranteed to capture the topology as the sampling becomes finer and
more observations are available. For this purpose we will introduce several results of
algebraic topology [14]:

Theorem 1 (Lesbegue number lemma). Let X C R" - compact space, then for any
open cover U = {Uj;} there exists such number A > 0, that VX C X, that diam(X) < A
JU; € U such that X C U
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Definition 3.1.6 (Nerve). Let F - collection of sets, then Nrv(F) = {G C F[(4ec & #
@, card(G) < oo}

We will also need a concept of homotopy equivalence, which plays a crucial role in
comparing different topological spaces[15]:

Definition 3.1.7 (Homotopy). Given two continuous functions f : X — Y and
¢ : X — Y on topological spaces X and Y, homotopy H(t,x) : [0,1] x X — X
such that Vx € X, H(0,x) = f(x), H(1,x) = g(x) and H(t, x) is continuous in both
variables, f and g are called homotopy equivalent.

Definition 3.1.8 (Retraction). Let r : X — A - continuous function on topological
space X mapping to the set A, then r is called retraction of X to A if r(X) = A, r|A =1

Definition 3.1.9 (Inclusion). Let i : A — X - continuous function mapping set A C X
into topological space X, then i is called inclusion of A into X if Vx € A,i(x) = x

Definition 3.1.10 (Homotopy equivalence). Two topological spaces X and Y are called
homotopy equivalent if there such continuous mappings f: X - Yand g: Y — X
such that fog:Y — Y and go f : X — X are homotopy equivalent to idx and idy
respectively.

Effectively homotopy equivalence defined in 3.1.10 means, that two topological spaces
might be stretched or deformed in a continuous way, so that they can match each
other. A notion of exact inverses is to restricting and leaves out many cases where no
inverses exists.

We call a set contractible if it is homotopy equivalent to a point.

Definition 3.1.11 (Good open cover). Let F - cover of a set, such that VF; € F, F; is
contractible.

Nerves are therefore abstract simplicial complexes, which describe how sets of a
given family intersect with each other. They serve as a bridge from abstract algebraic
topology to computational topology. From now on we consider geometric realization of
nerves to reason about topological equivalence. This is highlighted by the following
theorem given in two commonly employed variants[14]:

Theorem 2 (Nerve theorem (for open covers)). Let X - compact space (paracompact),
and F - its open cover, such that X = Ugcr F; such that VG; = Mg e, G # ©,G—
contractible, then |Nrv(F)| if homotopy equivalent to X.

Theorem 3 (Nerve theorem (for compact convex covers)). Let X - compact space
(paracompact), and F - its cover, such that VE;, F; is compact and convex, X = |J FeFs
then |Nru(F)| if homotopy equivalent to X.
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There are many variations of this theorem [14] covering broad spectrum of different
requirements, like open covers or closed covers, or requirement of connectedness and
contractibility and others. In essense nerve theorems stated in 2 and 3 claim, that for
some good covers of the topological spaces, their nerves serve as an approximation to
the topology of the underlying topological space.

Consider a compact set and a cover of that, given for example by a subset of points
located inside the set and encircling balls around those with a given radius of €.
By Borel-Lesbegue theorem such cover admits reduction to a finite subcover. Lesbegue
number lemma (see 1) further on assures that by reducing the radius of the balls
constituting the cover, one can achieve any precision in approximating topological
properties of the set, thus motivating striving for finer covers. Lastly with Nerve
theorem for open covers (2) at hand, applying it to the very same open cover would
allow to approximate the underlying space topology. In a similar fashion we could
consider a paracompact space and use other base sets, for example Voronoi cells, in
this case 3 would be used.

Based on the definition, nerves depend on the cover chosen for a given set. Geometric
simplicial complex, which might be given as a geometric realization of an abstract simplicial
complex, corresponding to a nerve of the cover is called a nerve complex. The most
commonly used type of such complexes is called Cech complex. [16]

Definition 3.1.12 (Cech complex). Let X € R" - a finite set of points, define closed
balls B.(x) centered at point x with radius €, then Cech complex is defined as

Ce(X) = {X € X| Nyeq Belx) # @)

Definition 3.1.12 of Cech complex implies, that it is isomorphic to a nerve of
the closed balls as defined higher and hence Cech complex is a nerve complex.
While enjoying good theoretical properties backed by the nerve theorems like (2,3),
computational side of Cech complex suffers when scaling dimensions or number of
points. [17] This is closely related to the problem of finding closest neighbors, and
checking if balls of a given radius intersect. A necessary and sufficient condition for
a subset X € X to be in the complex is that a smallest enclosing sphere of the points
has radius smaller than parameter e.

For the reason stated above computation of Cech complex might be restricting and
since TDA considers the same data at different scales to produce insights about un-
derlying topology, one needs to recompute complex for different values of parameter
€. For this purpose we will introduce another type of complexes, different from nerve
complexes:

Definition 3.1.13 (Flag complex). Let A - an abstract simplicial complex, such that
VS € Vert(A) if VS C S,card(S) =2,5€ X = S € S.
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This means that flag complexes are completely defined by simplexes of cardinality
two, which is a more general definition of a commonly used term of a clique complex:

Definition 3.1.14 (Clique complex). Let A - an abstract simplicial complex, such that
ski(A) is a clique of some undirected graph.

An important example of a clique complex is given by Vietoris-Rips complex [18]:

Definition 3.1.15 (Vietoris-Rips complex). Let (X, p) - a finite metric space, then
Vri(X) = {X C X|diam(X) < t}

Vietoris-Rips complex is a flag complex as defined in 3.1.13, as inclusion of simplex
into an abstract simplicial complex is uniquely defined by pairwise distances. Hence
computation of this type of complex boils down to calculation of a distance matrix
over given set of points and inclusion/exclusion of a simplex based on thresholding.
While not being a nerve complex Vietoris-Rips complex is isomorphic to nerve, although
not being constructed from covers usually. [14]

Until now we have fixed a parameter defining scale of a chosen geometric simplicial
complex, however as was mentioned earlier, TDA analyzes a given point cloud at
different scales, which requires computation of complexes for a varying range of
parameters. For this purpose we need to introduce a concept of filtration, which will
play a pivotal role in the applications[14]:

Definition 3.1.16 (Filtration). A parametric family of geometric simplicial complexes
K; forms a filtration if t < s — K; C K,

Both Vietoris-Rips and Cech complexes form filtrations.

In 3.1 we can see an example of the filtration, designed to emphasize, how multi-
scale nature of Cech complex can capture topology of the underlying space.

While not enjoying theoretically good properties based on the Nerve theorem (see
2), like for example Cech complexes, Vietoris-Rips complexes nevertheless play an
important role by virtue of serving as a proxy between Cech complexes, thus helping to
decrease computational overhead. Upon closer examination one can deduce that [17]:

VX € Ce(X) — X € Vrpe(X)

In order to make use of Vietoris-Rips complexes to approximate Cech complexes, one
would need another side inclusion, achieved via the following result due to Jung;:

Theorem 4 (Jung(1901)). Let Q € R” - a bounded set with diam(Q) < t then Q is

contained in a closed ball with radius r < 6¢t, where 6 = %

10
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Cech complex for eps = 0.1

>,

(@) e=0.1 (b) e =0.25 (c)e=0.5

Figure 3.1: Cech complexes built on samples from a circle for epsilon value of
e € {0.1,0.25,0.5}. Figures a-c show how topology of the underlying
space is evolving. Starting from 0.25 circular shape is recognized by
filtration.

This makes inclusion of the Vietoris-Rips complex into a higher radius Cech complex
possible and thus helps to sandwich one filtration by another by utilizing theorem 4.

For this reason Vietoris-Rips filtrations are usually applied in practice in order to
approximate Cech filtrations and preserve later good properties allowing one to infer
about the topology of the underlying topological space. [17]

3.1.2 Homologies

One of the most important question discussed in TDA is deciding if a pair of two
topological space is homotopic. This is however a complex problem and might not be
solved generaly. Homologies represent a way to address this issue. To introduce this
concept we will need to define a notion of homology.[15]

Definition 3.1.17 (Chain). Let A - a finite abstract simplicial complex, then for a given
d, chain is defined as ¢ = } ;¢ card(s)=d Ac0, Where coefficients Vo € A, A, € G, G -
Abelian group (usually chosen as Z;)

Most common of the group Z; corresponds to the choice of inclusion/exclusion of
simplices, so that simplices which come across two times in the chain expansion cancel
out. While other common choices feature groups Z, for prime numbers p or other
Abelian groups, universal coefficient theorem implies that integer coefficient based

11
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homology completely determine homology for different choice of coefficients.[15] Ad-
ditivity of each component of sums in chain definition suggests that they themselves
form a group structure, which will be called C;(A) To draw a connection between
chains of a different order (dimension of simplices making up a sum), we will need
to define a boundary operator in the following way:

Definition 3.1.18 (Boundary operator). Let é; : C4(A) — C4_1(A) : Vo € A, card(c) =
d,Bi(0) = Lrcocard(x)=d—1 T, boundary operator is then extended by linearity for
chains to C4(A) and is a homomorphism.

Definition 3.1.19 (Cycle). Let ¢ € C; : d;(c) = 0, then c - d cycle, or formally Z; = (J,)

Boundary operator maps simplices in a chain to their highest order faces and in this
way creates a link between chains of different dimension. Consider a special type of
chains, that represent a boundary of another one degree of order higher simplex:

Leto = {a,b,c},asimplex, thends(c) = {a,b} + {b,c} +{a,c} (3.1)

Let us now apply the boundary operator of an order lower to observe the following
important structure of the chains of different order and the connection between them:

62(03(0)) = {a} + {b} + {b} + {c} +{a} + {c} =0 (32)

This means that I(d3) C K(d;) or in general 1(6;) C K(d;_1). We define boundaries
as a space By, such that 3c € Cyyq : d4(c) = b or formally as I(By;). the previous
statements are now equivalent to B; C Z;. We say that two cycles cq,cy € Z; define
the same hole if they 3b € B; : ¢c; = cp + b. Such two cycles are called homologous
and define an equivalence relation on the space cycles, homologies are then defined as:

Definition 3.1.20. Let H; = Z;
B, - a quotient space of cycles over boundaries, then H; - d order homology and dim(Hj)
- d-th Betti number.

In this way homologies now describe topological information like connectivity (Hp)
or number of holes of different order H; for hole of dimension 4.

3.1.3 Persistent Homology and persistent diagrams

We now generalize the notion of homology to filtrations of simplicial complexes in
order to capture multiscale information of the discrete dataset. Consider a filtration,
then when computing homologies for different values of the parameters we observe
that some spaces are born and some are dying at a given value of parameter. This
information might be understood in the way, that some topological features, like

12
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holes, voids or connected components are appearing and disappearing. Formally
define a filtration {K};, and an inclusion map on those, which would then map by
functor to i; : C(K;_1) — C(K;) as an inclusion of chain spaces and which afterwards
would map to an inclusion of homologies. This sequence of homologies for different
values of parameter ¢ denoted as H(K;) forms a chain of homologies. We can now form
an object called persistent diagram - a multiset of pairs of birth-death times accounting
for each homology class. [3] This object will be in the core of the result of this master
thesis.

3.2 Topological Machine Learning

To this end we have introduced all the theoretical foundations required to setup the
framework of the topological machine learning. We start by determining its role and
place in the classical machine learning and then describing how the concepts outlined
in the previous subsections might be rendered as learning tasks.

In the most common scenario, machine learning problems can be seen as the
task of extracting insights from data, either with the help of labels (supervised
learning) or without them (unsupervised learning). While the first paradigm has
been dominating for a long period of time, researchers have been constantly subjected
to strain originating from necessity to provide labeled information to their data
and rendering their problem as a task-specific one. Unsupervised learning on the
contrary seeks to discover information hidden in the data itself without binding to
any problem to be solved. This information might have a different nature, but in
general it refers to the structure of the dataset.

Some common approaches of classic unsupervised learning include dimensionality
reduction, which relies on the fundamental manifold hypothesis, stating that high
dimensional datasets usually reside on the manifolds and have lower intrinsic dimen-
sionality. Prominent examples, like PCA would assume, that this manifold is linear,
while others like MDS or UMAP would try to pay attention to local structure of the
data and may reconstruct non-linear structures. [19, 20]

In the realm of deep learning, autoencoders have been widely adopted to produce
meaningful embeddings of data. Proper informative latent space might be achieved
by embedding model with a suitable regularization or loss. For example variational
autoencoders are not only capable of generating new unseen samples, but also provide
more continuous latent space, than a simple autoencoder would do. Such latent spaces
might be useful for compressing data and preserving only meaningful features for
downstream tasks. This idea serves as a foundation for a more unified view on the
learning problems, encompassing both supervised and unsupervised learning called
representation learning. In general any output of the hidden layer might be viewed
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as a representation, and the task of the representation learning is to make model
produce features, that might be used for similar tasks. This is where topological
machine learning finds its place.

3.2.1 Learning on Persistent diagrams

An intrinsic assumption, any deep learning algorithm is making is a continuity of
the learned function. Learning on persistent diagrams is therefore motivated by the
following result:

Definition 3.2.1 (Function sublevel filtration). Let f : X — R - continuous function,
and let X, = f ~1((—o0,7]) - r-sublevel of f,thenr <s — X, C X, such filtration of
topological spaces is called function sublevel filtration. Inclusion map h};* : Hy(X;) —
Hy(Xs) is a homomorphism, spanned by inclusion img(h,’) = H,’ - persisent
homology group of order p.

Definition 3.2.2 (Homological Critical Point). Let f be a function, defined as previous,
then 4 - homological critical point, if 3¢ > 0: by "¢ : Hy(Xs—e) — Hp(Xae) is not
an isomorphism.

Definition 3.2.2 of the homological critical point means formally, that some homologies
die at the point of a. For our next result we will also need to introduce an important
family of functions:

Definition 3.2.3 (Tame functions). Let f be a function, defined as previous, then f
- is a tame function, if it has only finite number of homological critical points and
homology groups and each sublevel have a finite dimension.

We will now introduce an important metric between functions, which finds its
application in many other domains and lets one quantify the distance between
persistent diagrams.

Definition 3.2.4 (Bottleneck distance). Let f,¢ : X — R - tame functions on the
same topological dpace X, and define D, as a mapping, which maps function to
its persistence diagram of dimension p, then bottleneck distance between D, (f)

and Dy(g) is defined as dg(Dy(f), Dyp(8)) = infy(suprep(f)y—y(x)!1* — ¥lle), where
v : Dy(f) = Dp(g), a bijection.

Bottleneck distance ,also known as Wasserstein distance, is commonly used in other
domains, like Wasserstein GANs for example. Since computation of this metric involves
optimization it might sometimes be costly to calculate it, especially for large batches.
Now we are ready to state the main result, which motivates learning on persistent
diagrams:

14



3 Theoretical Background

Theorem 5 (Stability Theorem). [21] Let f, g - tame functions on a triangulable space
X, then Vp > 0: dg(Dp(f), Dp(g)) < [If — 8lle

This theorem might be seen as the way to explain why small perturbations in the
functions, or, as might equally be considered, datasets, will not influence the distance
between persistence diagrams drastically.[21]

While working directly with persistent diagrams does guarantee theoretically good
properties allowing, it might not always be easy to calculate the bottleneck distance
between those. In practice its value is itself a result of an optimization routine. That
is why other representations of the persistence diagrams are of importance. At this
point we are ready to introduce a concept of Betti Curve, which will be used actively
throughout the work:

Definition 3.2.5 (Betti Curve). Let D, (f) be a persistence diagram of a function f, an
consider the following mapping, Bp (f)(x) = Li_oI(a; < x < b;), where {(a;, b;)}/_
- points in persistence diagram D, (f).

Betti Curve is an integer valued function, which counts the number of active
intervals in the persistence diagram, effectively measuring a number of topological
features a given dimension active at a given scale. They are simple to calculate
and form a linear space, which might be endowed with metric to quantify distance
between those. The downside of the Betti Curves on the other hand is that there
is no guarantee as stability theorem provides, nonetheless their application is still of
interest. We will consider the following kernel to quantify the distance between two
persistence diagrams based on their Betti Curve representation [22]:

K(Dp(f), Dy(g)) = ([ [Bo, () (x) = Bp, (o) (x)|Pdx)? (33)
0

Apart from Betti Curves kernel and Bottleneck distance one might want to directly
work with pairings encoded in the persistent diagram. Anytime a homology of a
given dimension dies, a birth of new simplex, which causes the homology to die
happens. For Vietoris-Rips filtration, which is based uniquely on distance matrix
between samples one can find simplices, addition of which causes death of homology.
For example, death of a connected component (homology of dimension 0) would
be caused by adding an edge between two, while death of hole would be caused
by forming a face covering this hole. The same logic is valid for creation of the
topological features, In this manner there is a pairing of features, accounting for birth
and death of the homologies.[23]

We will now define second important loss function, that will be used in this master
thesis, namely pairing loss:
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Definition 3.2.6 (Pairing Loss). [12] Let Ax - a distance matrix of points in the X,
Z is a latent representation of the dataset with a distance matrix Az, then pairing
loss L; is defined as a sum of two terms Lx_z = 3||Ax(nx) — Az(7x)||* and
Ly_.x = %||AX(7'(Z) — Az(7tz)||?, where 7x, 7tz - triplets (accounting for face for
dimension 1 of homology) or pairs (accounting for edge for dimension 0 of homology).

The primary goal of the pairing loss is to unify topological features of the original
space and the latent representation, which has proven to be a good regularization
term accompanied with reconstruction loss. The main effect is achieved by aligning
distances between the points in the original space and the latent one. Since only
topologically relevant distances are selected, it is expected, that topology of the latent
space will be preserved under the transformation (for example, autoencoder).[12] It
is also possible to show, that in the context of batch learning batchwise persistent
diagrams are close to the persisent diagram of the original dataset. The last metric to be
considered is called total persistence and is defined as follows:

Definition 3.2.7 (Total Persistence). Let Dy (f) - persistence diagram of an order p of
a function f, then Pers(Dy(f)) = Lrep,(r) [Tt — 2|7, where T - point in Dy (f)

Here total persistence is constituted by values defining scale at which topological
feature is alive and thus by minimizing this metric one aims to decrease overall
topological activity.[4] This metric might be exploited as a regularization term to
penalize model for predicting noisy data, where high number of points with low
living time.

3.3 Neural Radiance Fields

In the realm of 3D Machine Learning multiple representations of the scene might
be utilized. Each of those enjoy their own advantages and disadvantages when
applied in different settings. Voxel grid for instance operates on the basis of the 3D
uniform grid and hence allows for application of methods common in the area of
2D computer vision like convolutions or vision transformers. On the other hand
restrictions imposed by the computational and space complexity of either data and
models handling those make space for other data structures.

Neural Radiance Fields models also known as NeRFs was a leap forward in 3D object
reconstruction with a limited number of views from different angles at hand. In the
crux, NeRFs operate on the basis of 2 components - rays and their directions and try
to extract information from those comprised by intensity of the color at the given
point and color represented as an RGB vector. Directions of the rays might be seen
as an angle, those are shoot from and together with coordinates on the rays, model

16



3 Theoretical Background

operates on the basis of 5D input. Unlike previous approaches to reconstruction of 3D
geometry of the object, which were predominantly based on direct voxel in-painting,
NeRFs are optimized to predict values in continuous space.[7]

3.3.1 Architecture

The architecture of the original NeRF is fairly simple, as it is built solely on application
of dense layers and skip-connections for some of those. All the layers except for skip
connections and input share the same number of input/output channels, specifically
256 and the same activation of ReLU. An important aspect of the NeRF design lies in
the positional encoding, which reminds that of transformer, but in this case directly
changes the input of the layer. This transformation might be given by the following
formula and according to [7] plays a crucial role in enabling model to learn high
frequency terms:

n
pos(x) = x @ @(sin(Zinx),cos(Ziﬂx)) (3.4)
i=0

Here x represents three coordinates and transformations are applied coordinate-
wise with subsequent concatenation. The reason for that is that neural networks
are naturally biased towards low frequencies and in context of NeRFs produce
oversmoothed image. Attaching information with Fourier features to the original
coordinates maps them to a higher dimensional space, where the network can more
easily handle higher frequencies present in data.[7]

Another important aspect of how NeRFs are defined is the decoupling of directions
and positions along the ray. This is performed by restricting model to predict
density values based only on positions to ensure consistency independent of the view,
whereas color values are predicted based on both position and direction information.
This is performed by means of providing only position information as an input to
predict density at the point while additionally supplying the model with direction
information when finally producing color vector. The architecture is summarized in
the Figure 3.2.

3.3.2 Optimization

NeRFs are optimized directly to predict color of the resulting 2D view from a given
view direction, to produce colored image from densities and colors along the rays,
volumetric rendering by means of ray tracing [7] , given by the following formulas:

17



3 Theoretical Background

pos(X)

POS(X)  —— 256 (> 256 [+ 256 [>| 256 [> 256 (> 256 (> 256 [+ 256 [+ 256 128 — RGB

&

pos(D)

Figure 3.2: Architecture of original NeRF model. Here X - input rays positions, D -
directions, pos(X), pos(D) - positional encodings of X and D respectively,
o - predicted intensity of the rays, RGB - predicted vector of colors
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t t
C(r) = [ T(Oe(r(®)elr(t), d)at, T(t) = exp(= [ olr(x)do), (t) = o+ xt
i—1 i—1 (35)
Here o - origin of the rays, d - direction, f - step. T(t) - represents an accumulated
transmittance between two steps along the ray, which essentially gives a probability,
that ray is stopped by an obstacle. C(r) - represents a resulting color. During training
values of t are sampled from bins of the following design:

FU (2 (it — ), b (b — 1)) (3.6)

Here {t}}, - form an initial evenly-placed partition and the actual positions t are
sampled from the intervals to ensure continuity. Now, using quadratures integrals
from formula 3.5 might be approximated by the following sums:

i—1
Ti(1 —exp(0i6;))ei, T; = exp(= ) (o(r(£:))d:)), 6 = (ki1 — 1) (3.7)
i=0

C(r) =

o

I
—_

1

Here substitution of 0;4; directly by (1 — exp(é;0;) is performed to reduce the
problem to alpha-compositing by equivalence for small value of J;.

3.3.3 Hierarchical sampling

During training NeRF doesn’t differentiate between regions of low density and high
density, which may lead to paying attention to empty domains, contributing poorly to
representation capacity. Another issue might be posed by occluded regions. For this
purpose contributors of the original model came up with a concept of hierarchical
sampling, which relies on using two separate NeRF models - coarse and fine. First
raw positions are fed through the coarse model to produce information on the density
in vicinity of the points. Then the initial rays are resampled based on the following
weights:

Wi
Eizio Wi

Weights @; are used to produce importance sampling along the rays and concate-
nate raw samples with resampled positions. This new locations are used as an input

for the model sharing the same architecture titled as a fine model. The overall loss
term is then comprised of two summands:

w; = Ti(l — exp((riéi)),u?i = (3.8)
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L(é, C) — MSE(C}flnE’ C) +MSE(6COﬂrS€I C) (3-9)

Ablation studies have shown, that both positional encoding and hierarchical sam-
pling make a significant improvement over the original model architecture.

3.3.4 Quantifying NeRF performance

Results, that are produced by NeRF model was originally beanchmarked with respect
to were Peak Signal Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM),
which are also actively employed for other types of reconstruction tasks. In this
section we will briefly review, how this metrics are formulated, intuition behind them
and their application.

Definition 3.3.1 (Peak Signal Noise Ratio (PSNR)). PSNR(I,]) = 10 * loglo(%),

where I, | - input image and noise image respectively.

This metric is originally derived from the field of reconstruction of original image
from compressed image and effectively depicts, how large is the scale of original
image with respect to the mean of corrupting signal.

e ags s . _ Quxpycr) 2owytcr)
Definition 3.3.2 (Structural Similarity Index Measure). SSIM(x,y) = Rhid+c) (—oT e )’

where yy, iy - empirical means of the pixel values of two images, oy, 0y - empirical
variances and oy, - empirical covariance

3.4 Normalizing Flows

An important part of this work revolves around the concept of Normalizing Flows
(NF) is a probabilistic model used to approximate complex posterior distributions
arising during variational inference as well as to perform sampling from distributions
and likelihood estimation, where no explicit density is available. The basic concept
of a normalizing flow relies on the density transformation formula, which governs
how density of the distribution is changed upon application of a transformation. In
general this formula might be extended to any piecewise differentiable transforma-
tion, although in context of the current approach, only bijective and differentiable
transformations are of concern.[24] This restriction allows to track exactly how the
point sampled from a target distribution is being transformed.

Definition 3.4.1 (density transformation formula). Let Y = ¢(X), where g - monotone
differentiable function, and let f - pdf of the random variable X, then density of the

random variable Y is given by fy(y) = fx(g’l(y))|%(g’l(y))|
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When multiple mappings are used, they form a flow, whereas term normalizing
refers to aa base distribution, usually chosen to represent a latent variable with a
structure tailored to a specific task. Most often, this distribution is chosen to be a
multivariate normal, however other options, which could describe more complicated
topology of the target distribution might be used. For example, to model distribution
on the surface, having one void and two loops, Von-Mises distribution might be chosen
as a base, since it models random variable located exactly on the torus, sharing the
same topological characteristics as a target distribution.

Not all normalizing flows are explicitly invertible and there might not exists an
expression to obtain inverse under a given transformation. In such cases, one has
to sacrifice ability to sample from such probabilistic models and potentially invert a
flow by changing a direction, it flows from. This will allow to estimate likelihood of
observed data and eventually conduct training. By chaining multiple transformations
constituting a flow resulting formula of the log likelihood has the following look:

log(py(D])) (3.10)

When designing a normalizing flow architecture, several things are of concern,
specifically computational efficiency and theoretical properties, like bijectivity and
differentiability.[24] For this reason, arbitrary transformations, which, for example do
not allow exact computation of a Jacobian. Moreover Jacobians of full matrices

3.4.1 Planar and Radial Flows

Originally normalizing flows were designed with no binding to neural networks in
the context of variational inference and were employed in later on in the architecture
of variational autoencoders (VAE).[25] Originally two types of flows, namely planar
and radial were introduced, which, despite their simplicity could not be inverted
easily.[26] These flows laid foundation to other normalizing flows:

Definition 3.4.2 (Planar Flow). ¢(x) = x + uh(w'x + b), where h : R — R - smooth
non-linear function. Here u, w, b - learnable parameters.

This flow stretches and contracts points along directions defined by w and is
equivalent to a single layer perceptron with a skip connection. Not any choice of
h is permissible in this setting, and inverse of this flow is not usually available in
closed form, however the determinant of this flow might be computed effectively in
O(D).[26]

Definition 3.4.3 (Radial Flow). g(x) = x +
- learnable parameters.

p
T Te—an (* — x0), where ,a > 0, x9 € R"
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This flow sends point into a given direction defined by the vector xo and the
distance it is send to is defined by parameters B, a. This flow also allows effective
computation of the determinant and its inverse also may not always be computed
explicitly.[26]

3.4.2 RealNVP

For this work we consider a popular type of normalizing flows with a name RealNVP
(Real Non-Volume Preserving).[27] This type of a flow is primarily used for density
estimation and enjoy a wide spectrum of advantages like tractable likelihood, stability
and computational effectiveness. The transformation is given by the following
formula:

Yit1d = Xk+1:4 © exp(s(xyx)) + £(x1:x)

Here s, t - are scale and translation functions, which might be given by any neural
networks with trainable parameters. It is also common to choose this functions to
map original input into a higher dimensional space. Regarding the structure of the
Jacobian of this transformation, it has lower diagonal design of the following form:

Mjexk 0 310
Yt exp(sriy) o1

*1:k

This reduces complexity of computation from O(d®) to O(d), by virtue of this
enabling scaling ReaINVP to high dimensional datasets. This flow is moreover
explicitly invertible leading to applications not only in estimating the density of
the probability in a given region, but also enabling sampling from the resulting
probabilistic model. Though coupling layers might seem to lack expressiveness as
they only change only one portion of the input, leaving other untouched, they proved
to be powerful when stacked one after another. To alleviate a problem authors decided
to implement scaling and translation networks as residual connection networks and
equipped them with batch normalization, which is applied at the level of coupling
rather than inside the neural networks. In this manner normalization becomes yet
another flow in the chain and showed to accelerate training for deep flows.

3.5 Point cloud Machine Learning

In this section we will briefly discuss, how machine learning on point cloud effectively
differs from classic machine learning. In general point clouds have no meaning of
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ordering and therefore a natural invariance to be induced into network is permutation
invariance. In the field of point cloud machine learning one of the most prominent
architectures is PointNet model.[28]

In the setting of point cloud machine learning input data is given as an unordered
set of points. Except for permutation invariance, other restrictions like invariance with
respect to global rotation of the dataset or translation might be imposed. Handling
such problems might be hard in context of classic machine learning ang there have
been several attempts to approach this data representation. Point sets are also
processed poorly by MLPs, since the later fail to capture local dependencies and
combinatorial structures important for learning on point clouds.

3.5.1 PointNet

PointNet model was one of the first models, that shifted the focus of point cloud
learning from convolutions to special architectures tailored to tackling point sets.[28]
Before most of the researchers would render point clouds as 2D or 3D image and
process them with standard convolutional networks. This however incurs high
computational overhead for 3D datasets, where number of voxels needed to represent
a dataset is a restricting factor.

The idea of PointNet architecture is simple yet expressive. In order to induce
required symmetries, contributors designed their network to process input pointwise
with subsequent symmetric aggregation at the end. They reformulate the problem in
the following way:

f{x1,...xn}) = g(h(x1),...h(xy)) (3.13)

Here, g : R 5 R-isa symmetric function, h : R" — RX and f RY LR To
allow network to align points together, authors came up with a TNet - a network,
which architecture resembles the larger network’s and which acts on point features
attempting to align them. Result of TNet is a linear transformation which is then
applied to points. Resulting linear transformation is regularized to be close to the
orthogonal.
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In this chapter, some of the work done in the field to approach the problem of
3D reconstruction from a finite number of views using topological supervision is
reviewed. Papers like Topological autoencoders [12] and [4] as well as recent advances
in probabilistic generative modelling are also discussed. [27].

4,1 Neural Radiance Fields

As was mentioned in section 3.3, NeRF model is a novel architecture, which main
purpose is to model radiance fields in order to reconstruct views from previously
unseen angles.[7] Although the authors introduced several original ideas — most
notably Fourier features, which enhance the convergence of fine details—they did
not explicitly leverage the topological information embedded in the data.

Further improvements in the face of paper [29] attempted to make use of spatial
conical frustums instead of one dimensional rays, which reduced aliasing effects
of the 3D representation, when views were sampled from more distant viewpoints.
In this way, authors exploited 3D structure of the space and made a step towards
training NeRF with more detailed attention to spatial relationship.

Recent work by [30] pioneered usage of surface levels in context of neural radiance
tields, where authors studied deformations of views produced by the original model.
These studies suggest growing interest of community towards topological approaches
in the field of implicit 3D machine learning. Despite this trend, novel topological
methods employed in works like [12] or [4, 6], which proved to be essential in 3D
reconstruction and representation learning, have been remaining out of scope so far.
This might be explained by lack of methodology, needed to approach neural radiance
fields, based uniquely on surfaces produced by neural networks. This motivated us to
experiment with different tools from the realm of TDA in tackling this challenge.

4.2 Topological Autoencoders

As was mentioned in the section 3.2.1, equipping autoencoders with a suitable regu-
larization might contribute to structured representations arising in the latent space
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during training. In paper [12] authors proposed to endow classic autoencoder with
pairing loss (see 3.2.6). Topological supervision of deep learning algorithms is itself a
challenging task due to discrete nature of the computations involved. [12]. Pairing loss
however helps to circumvent this issue reducing computations to distance matrices
and allowing for direct flow of the gradients through the network. Discrete part of the
topology is now completely covered by persistence pairings, which represent topo-
logically relevant structures (edges, faces, e.g) leading to birth/death of topological
features, while distances are now used to directly supervise training process.

In their research authors found that using only calculations for dimension zero
it was enough to capture topology of the original space, while higher dimensional
persistence diagrams only slowed down convergence. [12] It was also described why
the resulting pairing loss function is differentiable and how to compute its gradient,
thus making it possible to use it in an end-to-end training fashion.

Based on this work it can be concluded that topological supervision in the latent
space might be a reasonable strategy to address our problem with. For this purpose
it was decided to experiment extensively with different topological regularization
terms and loss functions applied to intermediate representations of our models.

4.3 SHAPR

SHAPR stands for SHApe PRediction autoencoder [4] was proposed to tackle a
problem of 3D reconstruction for cellular data. While this model was initally designed
with no application of topological machine learning, it was later found to be beneficial
to include regularization term penalizing deviation of topology of predictions from
that of ground truth.[4]

Authors contemplated that both segmentation and reconstruction tasks rely on
the likelihood approaches, which cast the problem as predicting occupancy of a
given pixel/voxel. As 3D reconstruction is extremelly hard inverse problem, common
choice of loss function like BCE or Dice might not be the best choice, since they do not
capture any structural information. For this reason contributors came up with a total
persistence loss term (see 3.2.7) and Wasserstein loss term (see 3.2.4), that was used to
regularize the training process. Combination of geometry-based and topology-based
losses showed to improve reconstruction over multiple metrics.[4]

To benchmark the results, authors compared model with and without topological
supervision with respect to intersection over union (IoU), relative volume error and
relative surface error, which showed, that topological supervision increased overall
performance of the model in terms of all of the metrics.

Together with Example 4.2, SHAPR showcases the importance of topological
methods in the field of 3D reconstruction, further motivating the choice of tools
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for the problem addressed in this thesis. While topological autoencoders suggest that
topological regularizers applied in the context of simple models help structure the
latent space, the SHARR example demonstrates that this improvement goes beyond
representation learning and may find applications in downstream tasks, such as
reconstruction or segmentation.

4.4 RealNVP

RealNVP is a normalizing flows architecture, which was the first to introduce affine
coupling layers. [27] Along with this authors explained how batch normalization
and skip connections might be integrated into flow models allowing for deeper
architectures to be trained. This was one of the first deep learning papers suggesting
application of neural networks for normalizing flows, which previously relied on
composition of planar and radial flows (see 3.4.1) [26] and were used in context of
variational autoencoders.[26] As was stated in RealNVP paper, model can be used also
in settings, where priors are not chosen to be multivariate distribution, which might
help to capture topology of the target distribution more carefully.[27] While modelling
distributions on complex surfaces or spatial structures might be complicated, we
hypothesize, that normalizing flows models can benefit from intrinsic knowledge of
topology in the underlying dataset, which was addressed in paper [24]. Based on
these proceedings it was decided to embed topological supervision into normalizing
flows in order to estimate its effect on training.
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This chapter discusses our methodology, that the further research is built upon.
It starts by explaining how different loss functions, models, and architectures are
utilized, as well as our motivation behind them. Apart from this our choice of
software is presented.

5.1 Tools

In this section, metrics implemented from scratch are outlined, which were not
included in any known PyTorch packages. These metrics were designed in an end-
to-end fashion, enabling their use during training and allowing gradients to flow
through them directly.

5.1.1 Betti Curve Transformation

To the best of our knowledge, there is no publicly available implementation of
the Betti Curve transformation (see 3.2.5) or the Betti Curve loss (see 3.3). Although
several libraries, such as GiottoTDA [31], provide implementations, these cannot be
directly integrated into an end-to-end deep learning pipeline. In this work, the code
was adapted to be fully differentiable and readily usable as a layer in topological
machine learning. Additionally, the Betti Curve alignment algorithm (see Algorithm 2),
enabling the comparison of two curves, and a vectorized Union-Find data structure
(see Algorithm 4) were developed. Another contribution to the field of topological
deep learning included the vectorized computation of persistence diagrams from 1D
functions (see Algorithm 3). These implementations can be utilized beyond the scope
of this master’s thesis and may assist researchers in the field of TDA.

Original implementation of the Betti Curve transformation relies on hash tables,
arrays and Union-Find data structures. However, these structures are unsuitable for
vectorized computations in most deep learning frameworks. Given that number
of points in the diagrams is the same, curves are represented as an array of shape
n x k x 2, where k - number of points in the curve. The first coordinate describes
number of topologically active features, whereas the second accounts for filtration
values, where those change. To build such curves values from persistence diagrams,
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those are first sorted by the first coordinate. Afterwards a series of masking operations
describing how many intervals are active at the point of filtration are accumulated.
The resulting array constitutes Betti Curve. Apart from this symbolic perturbation is
applied beforehand to ensure that multiplicity of tuples constituting a diagram does
not hinder processing. This algorithm is formally written as Algorithm 1

Algorithm 1 Vectorized Differentiable Betti Curve transformation

Require: persistenceDiagram return y = B
persistenceDiagram <« symbolicPerturbation(D)
n < size(D)|0]
persistenceDiagram <— sortByFirstColumn (D)
intervals < flatten(persistenceDiagram)
B < zeros(len(unique(persistenceDiagram)))
foriel,...,kdo
idxFrom < findIndexStart(intervals, i)
idxTo < findIndexStop(intervals,idxFrom)
X+ XxX
N« 5%
if len(idxTo) > 0 then
maskEdges < calculateMaskEdges(intervals)
maskBetween <— calculateMaskBetween (idxFrom, idxTo, intervals)
B. < calculateBettiConstituent(maskBetween, maskEdges)
B < B+ B,
end if
end for
return B

Complexity of the Algorithm 1 is O(nk?), where n - number of curves (or batch
size), k - number of points in the curve. Since in most cases number of points is less
then batch size, algorithm would be linear in n for large batch sizes or equivalently
number of curves.

Another concern for deep learning models is differentiability of the resulting func-
tion. In case of our implementation symbolic perturbation is completely differentiable
and all other operations performed throughout Algorithm 1 boil down to application
of masks of different design. It might be then inferred that the resulting Jacobian
(or its approximation) would be a constant matrix, or at least a matrix with singular
values close by modulo to 1. This explains why algorithm 1 is stable and may not
cause gradient explosion or dying gradients.

28



5 Methods

5.1.2 Betti Curve Loss

To utilize Betti Curves for training, a metric needs to be implemented on them (see,
for example, 3.3). However, in most cases, the length of the Betti Curves is inconsistent
across samples from different datasets. For instance, if the target dataset is sampled
from a circle without perturbation, the number of tuples in its persistence diagram
would be just one. On the other hand, a small perturbation would already cause
the number of tuples to increase significantly. For this reason, in order to calculate
the Betti Curve loss as defined in 3.3, the domains of the two Betti Curves need to be
aligned.

Due to inconsistencies in the number of intervals in the Betti Curve representation,
iterating over each pair of compared curves is required. This may potentially hinder
the performance of the algorithm. First, the curves are aligned to ensure they have
the same underlying domain (as there might be a different number of points in each
curve). Next, the points of the curves are ordered and used to construct intervals.
Interleaving consecutive intervals and forming a larger domain helps build the final
representation by repeating values from both curves the required number of times.
The sought alignment is therefore equivalent to extending the Betti Curve definition
to the union of points from two or more curves. The algorithm is formalized as
Algorithm 2.

Algorithm 2 Betti Curve Domain Alignment

Require: Bs € R"* return y = Bs

n < size(D)|0]

Bs < padToSameSize(Bs)

minX < findGlobal Minimum/(B;)

maxX < findGlobal Maximum/(Bs)

foricl,...,ndo
curvel < Bs][i][0]
curve2 < Bl[i][1]
curveMaskLess < makeMaskLess(curvel, curve2)
curveMaskGreater <— makeMaskGreater(curvel, curve2)
numberInterleavesl <— getNumberO f Interleaves(curvel)
numberInterleaves2 < getNumberO f Interleaves(curve2)
curvelnterleavel < interleave(curvel, curve2, numberInterleavesl)
curve2 < interleave(curve2, curvel, numberInterleaves2)
curvel < curvelnterleavel

end for

return Bs
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Alignment of Betti Curves in algorithm 2 also has complexity of O(nk?), where 1 -
number of curves (or batch size), k - number of points in the curve. This is evident
from the loop in the core of the algorithm and quadratic complexity of procedures
inside. As in previous case this shows, that for large batch sizes algorithm works in
near linear time. Resulting aligned Betti Curves can now be plugged in any metric
to quantify difference between them based on the value of functions since they are
defined at the same set of arguments.

5.1.3 Betti Curve Regularization

One of the applications of Betti Curves revolves around measuring how close is a
given function to having only one maximum. While other approaches might be used,
Betti Curves built on top of the level sets of the 1D function capture information
about how rapidly the function changes and how the topology of the superlevel sets
is evolving. This intuition motivated us to consider calculating AUC (Area Under
the Curve) of a Betti Curve representation and apply this term as a regularization in
different scenarios, which will be discussed in the experiments section 6. A broad
prospective on the differentiable algorithm for constructing persistence diagram for
1D function based on higher sublevel or superlevel sets is provided below.

Complexity of the Algorithm 3 is O(nklog(k)), where n is batch size, k - number
of points constituting a curve. Here the logarithmic complexity is caused by sorting
operation taking place in the loop, given that our implementation of the vectorized
union find is linear in both k and n we get the following performance. Algorithm for
vectorized Union-Find is provided in 4

To understand the intuition behind minimizing the Betti Curve AUC, it is helpful to
first consider the concept of function sublevel filtration, as defined in 3.2.1. According
to this definition, a function with low topological activity—such as a unimodal
tunction—will have fewer intervals or shorter intervals in its Betti Curve representation,
leading to a smaller AUC. This provides insight into how minimizing the AUC is
similar to minimizing the total persistence (see 3.2.7) of a persistence diagram. Both
approaches would lead to a function with fewer topological features, such as a
smoother function with suppressed local maxima.[4]

It is also worth mentioning, that all of the outlined algorithms in this form were
implemented in PyTorch framework and can easily be run in CUDA backend resulting
in significant speed-up for large scale problems.
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Algorithm 3 Vectorized Calculation of Persistence Diagrams (1D)

Require: function € R™*¥, order € {sublevel,superlevel }
Ensure: persistenceDiagram € RR"*"*?2
function < function + symbolicPerturbation(function)
indices < sortIndices(function,order)
uf < UnionFindVectorized(n, k)
persistencePairs <— initializePairs(n, k)
foriecl,...,kdo
idx < indices]:, i
value < gather(function, index)
u,v < neighbors(value, idx)
mergeLeft, mergeRight <— calculateMergeConditions(value,u,v)
if isLocal Maximum (value,u,v) then
olderParent <— determineOlderComponent(uf,index)
persistencePairs <— updatePairs(olderParent,idx)
else
uf < mergeComponents(uf,idx, mergeLeft, mergeRight)
end if
end for
persistenceDiagram <— gatherPairs(persistencePairs, function)
return persistenceDiagram
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Algorithm 4 Vectorized UnionFind

procedure FIND(q)
Input: Query tensor g of shape (b)
b,n,_ < parents.shape
current <— parents
while True do
Reshape g to match batch dimensions:
q_reshaped < g.unsqueeze(0).repeat(n,1).T.flatten().view(b,n,1)
Create a mask to find g’s position in parents:
mask < parents|..,0] ==g
mask < concatenate(mask, mask)
Update current by selecting parent nodes:
current < parents|[mask|.view(b,2)
Update g with the new parent:
g < current|..., 1]
if current]..., 0] == current|...,, 1] for all elements then
break
end if
end while
return current]..., 0]
end procedure
procedure MERGE(requests)
Input: requests of shape (b, m,2) containing pairs to merge
b,n,_ < parents.shape
for j,q in enumerate(requests.unbind(1)) do
Extract pairs g1, 42 from g
Find their roots:
g1 < Find(q1), g2 < Find(q2)
Reshape g; for matching batch dimensions
Create mask for g; in parents
Update parents to merge the sets:
Replace parent of g4; with g
end for
return parents
end procedure
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5.2 Models

The models employed in this study focused on the application of topological terms,
utilized either as regularizers or additional loss terms, depending on the architecture.
A comprehensive overview of how these approaches are implemented or combined
to enhance the functionality of the classic NeRF is provided in Chapters 6 and 7.

5.2.1 Topological Autoencoders with Betti Curve supervision

Our first experiment studied quantification of the effect of topological autoencoders
as defined in paper [12] with Betti Curve loss supervision. It was found that Betti
Curve loss alone did not suffice to preserve the topology of the latent space under
the transformation defined by the autoencoder. Unlike pairing loss (see 3.2.6), Betti
Curve loss lacks the ability to capture which elements of the dataset are topologically
relevant. On the other hand, when added as a supplementary regularization term,
accelerated convergence of the model was observed. Indeed, while local structure is
captured by pairing loss, global topological information is covered by Betti Curve loss.
The proposed architecture is summarized in Figure 5.1.

X — | Encoder Decoder Reconstruction
- X — loss

. .
. . . .
i i
€ . € .2 —  Pairing loss 4@- Loss
o .

€ €

— N -

Betty Curve
loss

T

Figure 5.1: Architecture of Topological Autoencoder with Betti Curve Supervision.
Here, X - input dataset, X - reconstructed dataset, Z - latent code. Recon-
struction loss is chosen to be MSE Loss in this case.
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5.2.2 PointNet with Betti Curve supervision

To further build the logic around how Betti Curve transformation affects overall training
process it was decided to experiment with PointNet[28] architecture, which was used
as a backbone model with an aim to train the model to classify between different
shapes. The overall design of the model is provided in Figure 5.2.

X —FF PointNet — = Y 4

|
z
|

.
S0 NLL Loss
€ .
.

€

. . ¢ {
P . Betty Curve C Lo
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€

Figure 5.2: Architecture of PointNet with Betti Curve supervision. Here, X - input
dataset, Y’ - output labels, Y - ground truth labels and Z - latent code.
NLL Loss - Negative Log Likelihood Loss

5.2.3 Topology supervised Normalizing Flows

As described in section 3.4, Normalizing Flows (NF) are powerful generative models
that can be used to model the probability density function (pdf) of a given distribution.
In the context of NeRF, this is useful because the normalizing flows model can be trained
to predict the probability of samples in 3D space that have not yet been visited by
NeRF or suffer from insufficient density allocation. To embed topological awareness
into the normalizing flows model, a Wasserstein distance (see 3.2.4) term, as described in
[4], was added to the log-likelihood loss. This led to faster support convergence and
less noise in the samples generated by the model. Several popular normalizing flows
designs (see 3.4) were employed in our experiments.
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For further modeling, the ReaINVC architecture was chosen, as it can be used both
to estimate the probability of observations and to generate new, unseen samples from
the learned distribution [27]. The architecture of our approach is shown in Figure 5.3.

RealNVP X NLLLoss
X G)— Loss
. .
S .« .
S i
€ o € oY —>| Wasserstein Loss [——
. .
l{,

Figure 5.3: Architecture of Topology supervised Normalizing Flows. Here, Z - latent
code, X - generated samples, X - original dataset. NLL Loss - Negative
Log Likelihood Loss

5.2.4 Gaussian Mixture Normalizing Flows

Since some low-density regions of the objects are difficult to model with the NF model,
it was decided to first determine the topologically relevant features of dimension
zero of the original shape and then consider a Gaussian Mixture Model (GMM) with
means initialized at the centers of the edges.

In this way, the 3D scene was segmented into regions, which were then used to fit
the NF model separately for each region. During the training phase, sampling from
the mixture components was used to ensure smooth stitching along the edges of the
regions.

One of the limitations of normalizing flows is their inability to capture the topology
of the manifold from which the dataset is sampled. This occurs because the model
is highly dependent on the bias introduced by the choice of the base distribution.
While the popular choice of a multivariate normal distribution works in most cases,
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it is practically impossible to eliminate the effect of discrepancies in the topologies
of the latent space and the target distribution. For example, when attempting to
model a distribution with support residing on disjoint subsets of the original space,
one would observe long-lasting bridges between the two components. This happens
because continuous functions cannot change the topology of the transformed set
when defined on a convex space. For this purpose, initialization with a disjoint
Gaussian distribution or adopting a strategy such as that in paper [24] might help.
This limitation further motivated our choice of using a Gaussian Mixture Model to
preemptively split the dataset into components, making it easier for the NF model to
learn.

5.2.5 Topological NeRF

In this section we describe our way to build final model of this work - NeRF Topological
and which strategies like regularization approaches were employed. Over the course
of our study we moved from exploiting traditional MLP [7] architecture to attention
based model. Eventually we stopped on transformer based architecture as imple-
mented in paper [32], which was additionally been equipped with regularization over
attention weights matrix using Betti Curve AUC regularization.

This approach encouraged the model to learn dependencies between positions
on the rays. However, it was observed that the resulting attention masks were
noisy, which led to suboptimal performance. To address this issue, topological
regularization was introduced to smooth the weights. The regularization was applied
row-wise, utilizing the vectorization scheme described in Algorithm 1. Thanks to the
differentiability of our approach, model could be trained in an end-to-end fashion.

Inspired by BERT [33] only mid-level attention weights were subjected to regular-
ization, as those are excelling the most at capturing deep semantic relationships. In
our case it was expected to capture connection between rays and thus spare time for
traversing the whole entirety of rays. Architecure of NeRF Topological is illustrated in
5.4
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Figure 5.4: Architecture of Topological NeRF (TopoNeRF). Here X - input rays
positions, D - directions, pos(X), pos(D) - positional encodings of X and D
respectively, o - predicted intensity of the rays, RGB - predicted vector of
colors
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This section highlights the main results achieved in this work. We start with bench-
marking the Betti Curve reqularization term and loss in combination with various
architectures, as described in Chapter 5. Several basic datasets, representing differ-
ent topological properties, are examined. Specifically, algorithms are evaluated on
datasets sampled from single circle and double circles. Additionally, examples such
as the "Spheres" dataset from the topological autoencoder paper and the FashionMNIST
dataset are included.[12]

Beyond topological datasets, the effect of regularization via the Betti Curves AUC,
as defined in Section 6.1, is also investigated.

6.1 Effect of Betti Curve Regularizer

As was explained in Chapter 5, the effect of Betti Curve AUC Regularization is expected
to manifest as smoothing, which relies on minimizing the number of topological
features, similar to the effect of total persistence (see 3.2.7). [4] For instance, this might
involve minimizing the number of local maxima. To validate this assumption, several
experiments were conducted.

In the first test, a signal was modeled as a mixture of Gaussians. For the second
experiment, a signal was composed of incoming exponential distributions with random
offsets but the same scale. By doing so, incoming excitations were emulated. Such a
signal is referred to as a Hawkes signal, as it mimics a point process with self-excitation
as described in the paper. [34] In both experiments, an MLP was trained to minimize
reconstruction loss with the regularization term of Betti Curve AUC. Training was
performed for 200 epochs, with a learning rate of « = 1072 and regularization values
A € {1,1071,1072}. For the final test signal, the density function arising from NeRF
during training was considered.

Results illustrated by figures 6.1, 6.2 and 6.3 suggest that the effect of Betti Curve
reqularization manifests itself as expected, with higher regularization aligning with a
higher degree of smoothness. When compared to other schemes commonly employed
to smooth a signal, it is most similar to L1-regularization, which is, in turn, connected to
soft-thresholding.[35] It should, however, be noted that, unlike LASSO, it is exclusively
based on minimizing the topological activity of the signal.
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Figure 6.1: Betti Curve Regularization effect for Gaussian signal. Here A denotes
regularization power. Signal is smoothed and only global maximum
persists when regularization strength is increased.
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Figure 6.2: Betti Curve Regularization effect for Hawkes signal. Here A denotes
regularization power. Regularized signal spikes at the point proximal to
argmaximum and allocates mass there

An important remark must be made regarding results depicted in Figure 6.3. In
this scenario, we operated at the level of a typical intensity profile obtained from
training a NeRF and extracted during a period where the original model had not
yet converged but had already started exhibiting a tendency for allocating higher
values to a specific region.[7] Despite being an expected profile, it might nevertheless
be too broad, causing the resulting image to appear blurry. The effect of Betti Curve
regularization is exactly what helps here, as it cuts the heavy tails of the signal and
tightens the support. This provides further intuition on how to apply this approach
in the context of NeRF.

6.2 Classification based on Betti Profile

Another experiment that was conducted to estimate expressivity of Betti Curve Trans-
form was testing if a simple classifier could differentiate between shapes with only
Betti Curve provided as input. Due to inconsistency of number of points over Betti
Curves in the batch, we applied alignment algorithm 2 to represent each curve on
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Figure 6.3: Betti Curve Regularization effect for NeRF signal. Here A denotes regu-
larization power. Support of the signal is narrowed down redistributing
density over a tighter region

the same domain and thus enable their comparison. Unlike paper [12] we chose
dimension one as a target feature, since objects in our dataset differed by the number
of holes.

Our classifier was benchmarked against simple dataset comprised by perturbed
single and double circles. Stability theorem [21] ensures that low magnitude noise
does not change persistence diagrams drastically with high probability and thus Betti
Curves could serve as a feasible descriptor for this task. This time even though all
Betti Curves in batch were mapped to the same domain, dimension might vary over
batches. Therefore we trained a 1D fully convolution neural network to mitigate
input size restriction and handle Betti Curves of different number of points.

Experiment was repeated for several noise levels: o € {107!,2.5x 10~ !}. Figures
6.4, 6.5 highlight that a simple neural network could learn to discriminate between
shapes based on Betti Curves as descriptors only, thus demonstrating their expressivity
in context of topological machine learning.

Together with Experiment 6.1 and 6.2 we can now deduce, that Betti Curves imple-
mented in this work can indeed be used for various machine learning tasks, which are
not only constrained to the scope of topological machine learning. This is showcased
by the Experiment 6.1, which demonstrated aptitude of the model for smoothing
functions for different purposes.

6.2.1 Accelerated Convergence of Topological Autoencoders

In the next experiment, a topological autoencoder, as defined in [12], was trained
under the same settings as those used by the authors for the Spheres dataset. While
utilizing the pairing loss defined in 3.2.6 as a regularization term in combination
with reconstruction loss, it was additionally supplemented with the Betti Curve loss
regularization (see 3.3) to further improve convergence speed. Similarly to the pairing
loss, additional regularization was applied to compare the Betti Curves of the original
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Figure 6.4: Point sets and their Betti Curves subjected to classification for different
shapes with noise ¢ = 1 x 107! (a) - (c) show different shapes with
noise pertubation while (d) - (f) illustrate respective Betti Curves. A clear
definitive trait of a long living plateau with level 2 for double circles and
level 1 for a single circle is visible, which is a defining feature for the

model
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data with the Betti Curves of the latent code. The model was trained multiple times for
only 25 epochs and demonstrated accelerated convergence to a state similar to what
was described in the paper.[12] This was further validated by the metrics comparison
after evaluating the training results, as illustrated in Figure 6.6.

Another possible application of topological supervision involved imposing regular-
ization via Betti Curve AUC on the Betti Curves of the latent representations. However,
it was found that this regularization, acting as a restriction on topological activity,
did not perform well and hindered the model’s performance. This outcome was
expected, as the neural network needed to explore the latent space, and the imposed
loss caused it to perform poorly in an exploratory setting.

From the results provided in Tables 6.1 and 6.2, it may be deduced that using
additional supervision of Betti Curves, based on comparing latent representations
and reconstructed samples, contributed to the overall reconstruction quality by
reducing the corresponding loss term. The pairing loss is higher than that of the model
without the Betti Curve supplement. This could be viewed as scattered attention
of the network during training, as two regularization terms are now included for
optimization. Figure 6.6 suggest that latent representations remained undisturbed by
the introduction of new information.

Unlike Experiment 6.2, information from the Betti Curve is not sufficient to ensure
salient representations in the latent space. Indeed, such descriptors of persistence
diagrams bear no notion of pairing. This resulted in linear-segmented behavior in
the latent space observed after training. Spheres were squeezed and stretched along
random axes, which preserved distances but lacked pairings. Consequently, the Betti
Curves appeared the same, yet they failed to capture the topological profile of the
input data.

From Figure 6.6, it may be inferred that when trained with additional Betti Curve
loss regularization, clusters are better separated, and the encompassing sphere is less
interfering with the interior spheres. On the other hand, without regularization, the
topological autoencoder (TopoAE) exhibited tighter cluster locations, with the encircling
sphere more intertwined with the inner spheres.

A supplementary experiment was conducted to investigate the model’s perfor-
mance on a dataset more related to the real world. For this purpose, the FashionM-
NIST dataset, described in 2.2 and also used to benchmark the original model, was
chosen. [12] The model was then trained for 25 epochs on the dataset under the
same two settings as were used for the Spheres dataset. Upon closer examination,
Figure 6.7 reveals quite similar patterns. This similarity might be attributed to the
fact that the manifold on which the dataset resides is likely more complex than that
of the Spheres dataset, causing both models to struggle in capturing its topology in a
visually interpretable manner.
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Figure 6.6: Topological Autoencoder with Betti Curve Loss Regularization, trained
for 25 epochs on Spheres Dataset. Here A denotes regularization power.
Separation is more visible in our model and highlights how regularization
improves learned representations
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Figure 6.7: Topological Autoencoder with Betti Curve Loss Regularization, trained
for 25 epochs on FashionMNIST Dataset. Here A denotes regularization
power. Representations share similar patterns in the latent space empha-
sizing complexity of the underlyin manifold
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Model Reconstruction Loss Pairing Loss Betti Curve Loss
TopoAE 3.45 54.23 0.33
TopoAE + Betti Curve Loss 3.34 54.62 0.16

Table 6.1: Training results for different variations of Topological AE on Spheres
dataset. TopoAE + Betti Curve Loss captures topology better than simple
TopoAE compared by metrics, pairing loss is lower probably due to sharing
regularization weight with Betti curve loss

Model Reconstruction Loss Pairing Loss Betti Curve Loss
TopoAE 0.042 12.89 0.17
TopoAE + Betti Curve loss 0.04 11.82 0.16

Table 6.2: Training results for different variations of Topological AE on FashionM-
NIST dataset. All metrics are lower for the toplogical autoencoder model
with Betti Curve loss supervision

6.3 PointNet with Betti Curve Regularization

For the next experiment, a classification task similar to Experiment 6.2 was considered;
however, this time, a PointNet [28] model was used as the backbone. Unlike ordinary
neural networks, where interactions must be learned independently, this model is
capable of capturing spatial features pertinent to a point cloud as an object. Inspired
by paper [12], the model was provided with topological information by applying
regularization to the last layer before the head of the model. In this way, it was
encouraged to preserve the same topology of the latent code as that provided by the
input.

Additionally, with regularization embedded by a term comparing the Betti Curves
of the original dataset and those of the latent space, the model was trained for
200 epochs with a learning rate of « = 5 x 1072 and a regularization strength of
A=1x10"2

The PointNet model is primarily used for classification or segmentation tasks [28].
However, it is less effective for tasks involving warping or spatial transformations due
to its architecture, which assumes rotation and translation invariance [28]. Regardless
of whether topological supervision was applied, the model produced similar results
in terms of both accuracy and loss. This suggests that PointNet is inherently a robust
learner of the spatial relationships within the data.
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Figure 6.8: PointNet trained with and without topological regularization. Here A
denotes regularization power. Both Figures show that tasks were handled
correctly by both models. Presence of topological regularization did not
improve convergence nor metrics

6.4 Topology supervised Normalizing Flows with simple
shapes

In our last experiment our focus was set on normalizing flows model, specifically
RealNVP architecture.[27]. A simple dataset was chosen to benchmark our models.
It represented two disjoint non-convex point clouds reminiscent of crescent moons.
Despite successful convergence discussed in paper [27], learning such distribution
might be theoretically problematic for traditional normalizing flows architecture with
multivariate Gaussian base distribution. It might be hypothesized that while not
being able to exactly match the topologies the model can still converge faster to the
setting, where the support is more topologically near to that of a target distribution.
Nevertheless there is always a gap caused by the bias of choosing base distribution.
RealNVP based normalizing flow was trained for the following three settings:
without any topological guidance, with Wasserstein supervision and finally using
Gaussian mixture label assignment. The learning rate was chosen to be & = 1073
and number of epochs was set to 1000. Performance was compared with respect to
negative log-likelihood, Wasserstein loss (see 3.2.4), and Betti Curve loss (see 3.3).
Figure 6.11 shows that, for all models except the Wasserstein-regularized one,
there is a slight gap at the point on the Betti Curve where the subsequent value
equals 1. This point marks the stage in the filtration where all topological activity
stabilizes. This observation indicates that the regularization indeed contributed to
more accurately capturing the topology of the original dataset. Despite this, the
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Figure 6.9: Likelihood for various NF-based sampling methods(a) There is a non-
zero probability bridge-like region connection two components in ordi-
nary ReaINVC NF. (b) A bridge-like artifact is less visible in the case of
Wasserstein regularization. (c¢) GMM Based RealNVC produces no artifact,
however there is a slight problem at the borders of the mixture compo-
nents.

Gaussian mixture-normalizing model achieved a comparable approximation of the
topological structure, as evidenced by Figure 6.9. Both models outperformed the
original, regularization-free normalizing flow model, which is evident from the
log-likelihood values averaged across all observations given in Table 6.3.

The likelihood plots in 6.9 highlight the issue mentioned above regarding the in-
ability of normalizing flows to capture topologies that deviate from the support of the
base distribution. Upon closer inspection, a long-living, narrow region bridging two
components is observed in both the original model and the Wasserstein-regularized
model. The Gaussian mixture normalizing flow model, on the other hand, explains
the choice of this architecture, as it effectively separates the two regions. However, a
problem arises at the decision boundary of the mixture model, recognizable by lower
densities near the center of mass of the crescents 6.10c. To address this, alternative
component distributions could be considered. Samples generated from the models,
shown in Figure 6.10, illustrate how these models behave in practice. In particular,
they demonstrate how low-density regions can pose challenges when generating a
large number of samples.

This experiment helped us understand that topological supervision is beneficial
for generating samples from unknown distribution in order to facilitate training for
NeRF and help it deal with insufficiently explored regions in 3D space.
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Figure 6.10: Samples for various sampling models NF-based sampling methods.

Figure compares the samples generated by three different normalizing
flow models. (a) A simple NF model without topological regularization,
which produces a slight brige between two disjoint components. (b)
NF with Wasserstein regqularization, where the generated samples exhibit
improved alignment with the underlying data distribution. (c) NF con-
ditioned on a Gaussian Mixture, which demonstrates a better ability to
capture complex data distributions.

Model Log-likelihood Bottleneck distance Betti Curve Loss
Simple NF 0.13 271 0.99
Simple NF + Wasserstein Reg. 0.04 2.09 0.04
Simple NF + Gaussian Mixture -10.57 1.26 0.03

Table 6.3: Training results for different variations of Normalizing Flows. Gaussian

Mixture based NF is clearly dominating over others model, on the other
hand it introduces additional computational overhead. Metrics suggest
that addition of Wasserstein regularization improved on original RealNVC
model.
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Figure 6.11: Betti Curves for various NF-based sampling methods. The figure
compares samples produced by three methods: (a) Betti Curves by the
original ReaINVC model, (b) samples from Wasserstein-regularized model,
(c) and GMM-conditioned NF model samples. The red curve represents
the ground truth Betti Curve, while the blue curve corresponds to the
Betti Curve computed from samples generated by the learned distribution.
A slight deviation is observed at the points where the curves drop to one.
Notably, the Wasserstein-reqularized model yields the closest match to the
original Betti Curve.
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In this section, the main results achieved during the course of this work are outlined.
The original NeRF model was trained for various objects, and its shortcomings were
analyzed. Subsequently, the toolset described in Chaper 5 and Chaper 6 was applied.
As demonstrated in Section 6.1, the application of Betti Curve regularization can be
beneficial when addressing noisy signals characterized by an abundance of local
maxima.

To build upon these findings, a NeRF model was trained alongside a normalizing
flows model, reinforced with topological regularization, to provide faster convergence.
This approach was implemented side by side to produce a prior probability density
for the neural radiance fields model. Finally, a transformer architecture from paper
[32] was employed to enable information sharing between rays, and the model was
enriched with topological knowledge by incorporating a Betti Curve AUC regularization
term.

7.1 Original NeRF

In order to benchmark other models against a ground truth, original NeRF archi-
tecture was trained on several objects of the simulated data described in Section
2.3. Specifically three 3D objects were chosen - chair, lego and a ficus plant. The
setting was completely similar to that of the original implementation [7] except for
omitting hierarchical sampling for simplicity. Another reason was our initial struggle
to demonstrate that topological approaches might help to narrow down the regions
of interest and thus decrease training time drastically. The model was trained for
200 epochs with batch size of 4096 rays, number of samples 96 per direction and
positional encoding as described in paper.[7] Rays were marched through a cube
2,6]3. Training was conducted on images of reduced size, specifically 256 x 256 in
order to iterate faster and be able to estimate the effect of our experiments. From
now on this size was considered original for all images. To downsample the images
nearest neighbor algorithm was applied to preserve the data type of images.

Upon the model’s convergence, it was observed that there were no significant
defects in the reconstruction of the original images. However, some images exhibited
coarseness and a lack of fine details. In the original NeRF, fine details are typically
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learned later in training , while coarse features, such as object contours, are captured
earlier, what explains such behavior as in Figure 7.1

7.2 NeRF with Betti Curve Regularization on Rays

Before proceeding with the analysis of the results from the NeRF model reinforced
with topological regularization, it must be stated that the original model did not
perform well on the down-sampled dataset. This may be explained by the lack of
spatial information, which is present in neighboring rays. For instance, in the full-
resolution dataset, marching rays through pixels in a 2D image inherently provides a
prior for rays passing through nearby pixels or points in 3D space. This observation
was highlighted in paper [29], where the authors adjusted the original positional
encoding to act as a cone, capturing proximal information.

To this end, there are several directions for improvement. Attempting to accelerate
the learning of fine structures might be complicated, as topological information
contained in colors is usually not explicit. Global structure, on the other hand,
presents a more promising direction. Endowing the original NeRF model with
knowledge of topology might yield more rapid convergence to the real shape of the
object. Having seen how different architectures might benefit from the addition of
global topological data in Chapter 6, this approach was tested.

To address this, regularization was applied after each forward pass. However, this
approach proved to be overly restrictive for the model, leading to longer training times.
The reduced exploration rate, caused by oversmoothed intensity values along the
rays, hindered effective learning. Both the train and validation losses were dropping,
but at a slower rate than when regularization was not applied. For this reason, it
was decided to restrict the model to only subject certain rays to the regularization
procedure. The candidates were sampled according to two strategies. In the first
setting, a biased coin was randomly flipped, and regularization was applied to rays
that landed on heads. In the second scenario, the variance of intensities was used to
decide if regularization would take place. Specifically, rays with variance higher than
the 0.9 quantile within the batch were subjected to Betti Curve regqularization.

While being less informative, the first approach offered less computational overhead
and fewer potential stability issues, as the variance of intensities could vary drastically
over training. Yet, in practice, the second strategy yielded better results. Validation
curve plots depicted in Figure 7.7, which were measured 15 times for each setting —
with and without Betti Curve regularization — showed that the behavior displayed by
the training processes varied. To be more precise, the regularization term accelerated
the convergence of neural radiance fields, a phenomenon that was not observed when
larger image sizes were used.
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predicted depth field predicted image original image

,I

predicted depth field predicted image original image

Figure 7.1: Original NeRF Reconstruction after 200 epochs for chair, lego and ficus.
Despite overall structure captured well, resulting views are still blurry
and depth maps display a certain degree of artifacts
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Figure 7.2: Original NeRF Rays profiles for random 3 rays sampled from chair, lego
and ficus objects. Each ray is rendered with 96 points spaced evenly
between 2 and 6. Local maximums help to determine expected location of
the chair (a), lego (b) and ficus (c) in the space along given direction

In order to estimate regularization effect on multiple 3D objects and quantify their
impact on the training process images were downsampled even further - to 64 x 64. In
such setting it was possible to run training multiple times so as to statistically confirm
our observations. It was found that all shapes either benefited or experienced no
change after addition of Betti Curve regularization. The learning curves were steeper
as opposed to a flatter analogue for model without topological regularization.

Judging on the observed results proposed topological regularization term might
help improve convergence in low-resolution scenarios, while not exhausting compu-
tational resources of the program. A possible explanation of this effect might be that
under low-resolution conditions information referring to vicinity of the points plays
much lower role, because lower-dimensional pixels already compress this information.
To illustrate accelerated convergence to the shape, each model was trained for 50
epochs and used to predict depth field and the view from a given angle. The results
illustrated by Figure 7.6 asserted that our topological supplement helped model
benefit for certain shapes and was not restrictive for others. Original model was also
trained in this setting and compared to the regularized version, highlighting the effect
of our approach. The results are illustrated by Figures 7.3, 7.4 and 7.5

7.3 NeRF + Normalizing Flows prior

In the previous section it was explored how information from Betti Curves can be
utilized to achieve a certain degree of training acceleration when dealing with low-
resolution images. In this experiment, the NeRF model was supplied with a prior
probability of a point along the ray being occupied, produced by a normalizing flows
model. This model is further referred as Topological NF + NeRF
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predicted depth field predicted image original image

predicted image original image

Figure 7.3: NeRF with and without Betti Curve regularization on rays for chair
object after 50 epochs. (a) Predicted depth map and image of the Betti
Curve regularized NeRF model shows less artifacts and handles topological
features of the image e.g. hole between handle and seat of the chair better.
(b) Original NeRF model predicts hole blurry and introduces more artifacts
in the depth map
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predicted depth field predicted image original image

predicted depth field predicted image

Figure 7.4: Comparison of NeRF with and without Betti Curve regularization on
rays for the chair object after 50 epochs. (a) The predicted depth map and
image of the Betti Curve regularized NeRF exhibit fewer artifacts compared
to the original model. (b) The classic NeRF model shows poorer color
capture.
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predicted depth field predicted image original image

predicted depth field predicted image original image

.

Figure 7.5: NeRF with and without Betti Curve regularization on rays for ficus
object after 50 epochs. Both Betti Curve regularized NeRF (a) and original
NeRF model (b) display similar pictures.
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Figure 7.6:
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Random rays profiles for chair, lego and ficus objects trained with and
without topological regularization after 50 epochs. Here (a) and (b)
display chair object, (c) and (d) - lego and (e) and (f) - ficus. Rays from the
topologically regularized model (a, ¢, e) exhibit lower variance and offer
greater certainty regarding the true location of the object compared to the
original NeRF model (b, d, f) for all objects except for ficus.
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Figure 7.7: Validation curves for 10 epochs for chair, lefo and ficus objects with
median curve highlighted, number of model runs - 15. For each of the
objects - chair (a), lego (b) and ficus (c) it is clearly visible that addition of
regularization is not harmful and sometimes beneficial in low-resolution
setting

For this purpose, separate models were trained for the chair, lego, and ficus objects.
During the training phase, the NeRF model visits multiple positions in 3D space to
accurately capture the underlying structure of the object. The original NeRF model
must iterate over the same positions multiple times to account for dependencies on the
view angle. During these iterations, the model calculates the density profile of points
in the space. Normalizing flows explicitly models the probability density function
(PDF) of the dataset under certain assumptions about the model architecture.[26] For
RealNVP, these assumptions are met, making it feasible to use the density values
produced by this model.[27]

Although some studies [36] suggest training a conditional normalizing flows model
in an end-to-end fashion with NeRF, it was chosen to simplify the process to avoid
shifting from point estimation to probabilistic modeling. Instead, the two models
were trained stepwise by iterating between the NeRF and normalizing flows models.

The normalizing flows model was further enhanced with Wasserstein reqularization,
as described in Section 6.4. This regularization demonstrated fast convergence to the
true support of the distribution and did not require extended iterations, unlike the
GMM normalizing flow. The neural radiance field (NeRF) model was initially trained
for five epochs to warm up, after which training alternated between the two models,
with five epochs allocated to NeRF and ten epochs to the normalizing flows model.
This schedule allowed the probabilistic model to adapt more quickly to changes in
the 3D space distribution.

At each iteration, training of the NeRF model started after the first epochs of
the normalizing flows model had elapsed. The radiance field model then continued
training using the density profile generated by the generative model as an additional
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Figure 7.8: Nf model samples and locations sampled from NeRF after 10 iterations
of training. Original Data (red) and Samples (blue) from upper hemi-
sphere showing that for chair (a), lego (b) and ficus (c) NF model managed
to learn distribution successfully

regularization term. KL divergence was applied as a regularization term to quantify
the discrepancy between distributions. To collect samples from the trained NeRF
model, initial certainty threshold was set to 0.6 and annealed to 0.8 over the course
of training, iterating over ten directions randomly sampled from the unit sphere.
Sample learned point clouds in Figure 7.8 illustrate that normalizing flows model was
able to capture distribution in 3D space effectively.

This approach effectively accelerated training. As shown in Figure 7.9, the genera-
tive model converged after 200 epochs to the true support of the object, leaving the
fine representation of the scene to the NeRF model while handling the coarse structure.
However, maintaining two models concurrently proved resource-intensive and the
approach was not studied further. Additionally, the need to perform sampling from
the entire sphere along which the camera moves to construct complete training data
for the normalizing flows model posed another significant challenge.

7.4 Topological NeRF with Transformer Architecture

Finally, our last model, described in Section 5.2.5, was trained and benchmarked
against the three aforementioned objects at a resolution of 256x256. This time,
the architecture was switched to an attention-based model [32], with Betti Curve
regularization applied to the attention weight matrix. This modification aimed to
encourage the model to focus on local information while exploiting information
sharing between rays. This approach bears some similarity to [29], where the authors
employed spatial encoding to encoder vicinity of each point. The model is further
referred as TopoNeRF

Since the attention-based mechanism requires longer training, the regularization
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predicted depth field predicted image original image

predicted image original image

predicted depth field predicted image original image

Figure 7.9: Topological NF + NeRF results for chair, lego and ficus objects after
50 epochs. Images show few artifacts at predicted depth map for chair,
lego and ficus, reconstructions are still somewhat blurry, however at better
quality than when supplied with Betti Curve reqularization
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strength of the Betti Curve AUC regularization term was gradually increased from 0
to 1072, Without this adjustment, the model would get stuck in a basin, consistently
predicting zeros. Training was conducted for 200 epochs, revealing slower iterations
and a flatter learning curve. Despite this convergence behavior - primarily attributed
to finer changes in color faster shape convergence was observed, similar to the results
seen in the previous experiment. These findings are supported by Figure 7.10.

Our approach demonstrated that changing the architecture to a more robust
and expressive attention-based model, supplemented with topological supervision,
outperformed our efforts to enhance the MLP-based architecture. Fine details related
to color were better captured by the topological NeRF compared to its original
counterpart. Supporting metrics, including PSNR (see 3.3.1) and SSIM (see 3.3.2), are
listed in Table 7.1. Notably, the total running time of our model differed from that of
the original by less than one hour, with both architectures struggling to learn finer
details. This limitation is also inherent to the classic NeRF architecture.

7.5 Analysis and Bechmarking

In this section, the models described in this chapter are benchmarked, compared, and
discussed. The classic NeRF model demonstrated good experimental convergence
but was hindered by slow training and the need for a sufficient number of views
to accurately capture fine details of a 3D object. Several studies have proposed
extensions to the original architecture to address these limitations and enable training
with fewer views.[37, 38]

In our experiments, the classic NeRF equipped with Betti Curve regularization applied
to rays, as described in section 7.2, produced promising results when applied to
low-resolution data. Validation curves were flatter for some objects, particularly those
with complex topology, and the depth fields of the resulting reconstructions were less
noisy. The ray profiles also exhibited improved behavior, with densities being more
tightly packed, indicating that the model allocated less probability mass to empty
regions.

However, the model struggled to replicate these results on higher-resolution sam-
ples. This limitation was likely due to lower-dimensional images containing a greater
proportion of information described by individual pixels, making topological reg-
ularization more effective in such cases. Despite this fact our approach can still be
applied to real world problems. Specifically, biomedical images are usually captured
at low resolution, which might be a perfect setting for our model.

Our second model, described in Section 7.3, was trained in a stepwise manner
involving two stages. In the first stage, normalizing flows equipped with topological
regularization generated density profiles, which were subsequently used by the
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predicted depth field predicted image original image

predicted depth field

predicted depth field predicted image

Figure 7.10: Topological NeRF Reconstruction after 200 epochs. It is visible, that
fine details are captured better than in case of original model, trained the
same number of epochs
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neural radiance fields (NeRF) model in the second phase. This study was conducted
on lower-dimensional images, where the model exhibited faster convergence to the
true shape of the object.

However, when applied to full-dimensional images, the convergence time increased
significantly and our model design was no more reasonable for this setting. Despite
this limitation, the stepwise approach outperformed the previous method described
in Section 7.2.

Our final attempt appeared to be comparable to the original model in terms of
speed of convergence. Unlike classic NeRF however shape information was captured
at much more earlier step. Therefore our novel architecture managed to successfully
unify topological machine learning principles with novel neural radiance fields model.
As might be observed from Table 7.1 our model outperformed original architecture
by all metrics.

Model MSE PSNR SSIM
NeRF 0.008 2513 0.85
TopoNeRF 0.002 27.18 0.87

Table 7.1: Training results for NeRF and TopoNeRF trained for 200 epochs and
averaged on 3 different objects. All of the provided metrics suggest
improvement over the original NeRF architecture
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8 Conclusion

In this work we developed a novel architecture called Topological NeRF based on the
original NeRF model ideas and additionally supplied with topological supervision,
which enjoyed accelerated shape convergence in comparison to the classic model.

For this purpose, we referred to a popular persistence diagram descriptor, namely
Betti Curves, providing a simplistic yet expressive and intuitive way to directly
embed knowledge of topology into different models. Due to absence of public
implementation allowing for end-to-end gradient flow, we set off to write pytorch
modules from scratch, resulting in vectorized and fully differentiable implementation,
which might be used beyond this thesis. To build intuition behind this tool we run
experiments outlining the effect of Betti Curve AUC regularization.

Further on we conducted studies covering landscapes of probabilistic generative
modeling, specifically normalizing flows model, and notably topological autoencoders.
Our research showed, how versatile architectures could be benefit from addition of
topological supervision and how future researchers might enhance performance of
this models by means of additional topological regularization.

In order to approach NeRF from topological prospective, we started with equipping
original architecture with notion of topology by imposing regularization on rays
profiles. This however introduced additional overhead and did not contribute to
overall convergence of the model. Despite this fact, our model demonstrated aceceler-
ated convergence in a low-resolution setting when supplemented with topological
regularization.

On the basis of the results of the experiments, we outlined further strategy on
approaching NeRF from topological point of view. For this purpose we trained a
separate model merging neural radiance fields with normalizing flows and training
them in conjunction in order to accelerate convergence of the NeRF model. Even
though the model experienced increased convergence rate, it was too cumbersome to
train two models causing longer iteration time. This motivated us to introduce our
novel variant of NeRF based on Transformer architecture and additionally reinforced
with Betti Curve regularization on top of attention weights. With the help of this model
we finally experienced faster shape convergence with cost per iteration not too higher
than that of original architecture.

We believe that NeRFs can still be improved by endowing them with even finer
topological information. Our findings in this work may serve as a solid foundation
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8 Conclusion

for understanding where future studies might take off, while also contributing to
publicly available codebase by implementing Betti Curve transformation and thereupon-
based metrics and losses. Microscopy research for instance, often operating on low
resolution images might utilize NeRFs with Betti Curve regularization, while complex
scene capturing at high resolution will benefit from NeRF Topological. To conclude,
NeRFs are capable of being supplied with topological information and we expect this
trends to grow in the future studies.
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