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Abstract

Hospitals play a crucial role in providing access to valuable medical data, making it essential to leverage
this information in collaboration with physicians. Lung cancer is the focus of this thesis, in which special
techniques are used to extract knowledge from a high-dimensional dataset provided by the University
Hospital Essen. Considering that it is the deadliest cancer worldwide, this analysis is of great importance.
Therefore, we explore different approaches that can help doctors gain additional insights into the intrinsics
of this disease.
By modeling the risk of lung cancer patients experiencing an event such as treatment failure or death, it

is possible to understand the mechanics of this disease and identify potential treatment options and their
effectiveness. Thus, we compare three popular survival methods based on this real-world dataset, namely:
Random Survival Forests, DeepSurv and XGBSE. We find all of these methods to exhibit a similar perfor-
mance, which is surprising because they rely on different architectures and methodologies. In addition,
we show that the use of Random Survival Forests in combination with SHAP values, which can be used to
generate interpretable representations, provide clinicians with valuable insights into feature interactions
and their importance, but also allow for model validation.
In addition to the survival analysis, which serves as a baseline for comparing different models, another

important aspect is modeling when a patient is likely to fail to respond to treatment. If physicians know
when to expect it, they can adjust the medication or change the treatment altogether to prolong the pa-
tient’s survival. Our goal is to take advantage of patient-patient similarity graphs in combination with
Graph Neural Networks to capture information from patients who are similar to each other to improve
treatment failure time prediction. Given the absence of inherent connections between patients, we present
a novel method to generate patient-patient similarity graphs using Unbalanced Optimal Transport on their
laboratory values. By applying various Graph Neural Networks on these graphs, we highlight their effec-
tiveness in predicting if treatment failure occurs within half a year or later. However, we also find that the
predictive performance is still limited compared to a Multilayer Perceptron. Nonetheless, our approach
warrants further investigation, particularly in subsets with higher overall similarity, given the diverse
nature of lung cancers, which could lead to enhanced predictive performance.
In conclusion, this thesis emphasizes the importance of leveraging hospital data, underscores the sig-

nificance of survival modeling, and exemplifies the necessity of exploring new approaches such as us-
ing Unbalanced Optimal Transport to construct patient-patient similarity graphs. Future research should
seek to further optimize survival methods with an explainability integration and patient-patient similar-
ity graphs, as both can directly contribute to the medical decision-making process and, more generally,
advance medical research.
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1 Introduction

Looking at Artificial Intelligence (AI) and related companies over the past few years, it seems like there
is never-ending, exponentially growing progress in many areas. This is facilitated by hardware manufac-
tures like NVIDIA, who produce the essentials to train AI models at a large scale. They provide Graphics
Processing Units (GPUs), which offer higher efficiency compared to Central Processing Units (CPUs) and
enable further scaling when combined collectively. Consequently, this technological advance has enabled
the training on progressively larger datasets, significantly contributing to recent progress in model perfor-
mance and success such as for Large Language Models (LLMs) like GPT-4, image generation models like
Midjourney, and generative AI in general. This development naturally leads to the question of how these
models can be applied to hospital data to advance medical research, which has already demonstrated its
potential with models such as PAIGE and PubMedGPT [1, 2].
Although this progress in models and hardware creates several possibilities it also comes with many

questions, such as the cost-benefit trade-off for training a model over multiple months in order to get in-
cremental performance gains over an already existingmodel. This is also important from an environmental
perspective, as running these models on server farms requires energy for cooling and operation. Is scaling
alone the right approach? What about the impact of dataset quality, since this is already where bias could
be introduced through imbalance. These are all questions that need to be considered for medical models
such as survival models, as even incremental enhancements in predictive capabilities could potentially
save lives, while imbalanced datasets could compromise the overall generalization performance.
One of the most important issues is the origin of the data used to train these models. Since this can lead

to bias, it is important to ensure data quality. However, there are also concerns about data security, data
ownership, and data privacy that need to be considered. For example, LLMs like PubMedGPT are trained
on a large text corpus, but what if a patient does not want their medical record to be used for training and
prefers the model to “unlearn” their information? Another notable case that underscores the importance of
data privacy is the imposition of a 1.3 billion dollar fine onMeta for infringing EuropeanUnion privacy laws
by sending data to servers in the United States [3]. Additionally, because of the fast progress of AI, many
legal concerns and loopholes have not yet been effectively addressed or legally defined by governments.
In the light of these aspects, a more general question arises: when will the pace of progress in AI decel-

erate and reach its peak and what areas are still to be explored? Focusing on the latter aspect, there is still a
great deal of diversity, encompassing areas such as explainability, fairness, robustness, and the application
of pre-existing models to previously unseen data. Numerous unexplored datasets exist within companies,
institutes and hospitals that hold significant potential for discovering valuable insights. However, the
applicability of generic out-of-the-box algorithms may be limited. Nevertheless, transfer learning—a tech-
nique that uses internal model parameters from existing models to train a custom model—may be a viable
option, but is not always practical. In general there is not a one size fits all model to tackle all different
problems which arise.
Hospitals, in particular, have a wealth of data with immense potential that has yet to be tapped. Their

data comes from a variety of modalities, including MRI images, tissue samples such as Hematoxylin and
Eosin stains used in histology, laboratory values, patient survey data, and more. Hospital data is of partic-
ular interest because they allow researchers to work hand-in-hand with the physicians who provide the
data. This collaborative approach allows models to be tailored directly to specific needs and to leverage
physician-induced medical knowledge by refactoring models based on medically relevant parameters.
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1.1 Motivation

The dataset analyzed in this study was obtained from a collaboration with the University Hospital Essen
(UHE), Germany, which specializes in oncology, transplantation, cardiovascular diseases, infectious dis-
eases, immunology, neuroscience, and behavioral sciences [4]. Generally, clinical data in the UHE is stored
in FHIR format—a standardized framework for exchanging electronic healthcare data—and can be easily
retrieved through specific queries. In this particular dataset, we examined a cohort of 4320 individuals
diagnosed with lung cancer. In 2020, lung cancer was the largest contributor to cancer deaths with a total
of 1.8 million deceased worldwide [5]. Diagnosis includes imaging tests, sputum cytology and tissue sam-
ples, but detection is often delayed because symptoms tend to develop mostly when the tumor has already
reached an advanced stage of growth [6, 7]. After initial diagnosis, the 5-year survival rate is approxi-
mately 23 percent—though this greatly depends on lung cancer type (NSCLC vs SCLC) and stage—and the
chances of cure are highest if the cancer is detected at an early stage [8]. Treatment includes surgery, radi-
ation and chemotherapy, however two-thirds of patients receive only palliative chemotherapy or radiation
therapy, because metastases or compromised pulmonary function, render surgical intervention impossible
[7]. However, since immunotherapy was approved as a first-line therapy for many patients with NSCLC
several years ago, their chances of survival have improved significantly.

There are many risk factors for lung cancer, including environmental and occupational exposures,
lifestyle factors, and chronic lung disease, but the most prevalent factor is still tobacco use [9]. The latter is
also a feature of the dataset provided by UHE. In addition, we have unique information for each patient on
more than 90 different laboratory values, molecular markers, disease classifications, surgical procedures,
histological information, treatments, tumor stages, body composition information, and more. The dataset
in this work is entirely tabular. With this wide range of features, we aim to take advantage of the diversity
and depth of this dataset to provide a holistic study. Hence, it is essential to provide a detailed overview
of the methods employed to analyse this dataset.
Furthermore, this is a real-world dataset, which in comparison to other clinical datasets, was not explic-

itly created for a clinical trial, thus encompassing a higher level of complexity and granularity. This unique
nature has several advantages, such as a larger sample size which contributes to model performance and
robustness. It also captures real-world complexity, allowing for a more comprehensive representation of
diverse patient populations. In addition, real-world datasets are considered to be more representative,
allowing for more accurate and generalizable conclusions. Their analysis allows physicians to explore
multiple promising areas and identify potential domains for future clinical trials. However, it is important
to recognize the limitations of real-world data because—unlike a controlled clinical trial—patient selection
is not random. As a result, real-world data may have higher levels of bias and increased risk of confound-
ing. Furthermore, it is more likely to have a higher prevalence of missing data, and overall, the data tends
to be less comprehensive.
The methods applied in this study focus primarily on examining different facets of the dataset, including

patient-patient similarity graphs and explainable survival analysis. One objective is to provide a detailed
and comprehensive overview of recent state-of-the-art survival methods. Our goals are to evaluate their
performance, obtain an understanding of feature importance and interactions, and benchmark their pre-
dictive power on a real-world dataset rather than clinical trial dataset. In this way, we try to gain an
understanding of their robustness as well as their advantages and disadvantages. Adding to that, we aim
to explain the decision-making process of such a survival model and provide new medical insights into
the interactions between features for lung cancer patients.
Another objective is the creation of patient-patient similarity networks without prior knowledge of

their connections and the comparison of their predictive power using Deep Learning (DL) methods. With
this approach, we aim to leverage the collective knowledge within communities so that when perform-
ing a prediction task for a patient, the model relies primarily on information from the patient’s nearest
neighbors. In this way, we strive to provide a more individualized and less biased estimate, thus tailor-
ing predictions to the specific circumstances of each patient. We further construct sparse patient-patient
similarity networks and assess their performance in comparison to a naïve network generation approach.
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These networks allow us to effectively capture relevant similarities between patients and use them tomake
predictions, while reducing the overall complexity of the model.
In general, we seek to understand disease patterns in lung cancer, uncover potential risk factors, facilitate

data-driven decision-making, tailoring treatment, improving patient outcomes, and generally advancing
medical research.

1.2 State-of-the-Art

Precision medicine, personalized treatment and the analysis of large scale medical datasets is not new, but
few Machine Learning (ML) models are actually used on a daily basis by physicians. In 2021, for example,
the first AI-based software named PAIGE for identifying potential cancerous regions on a prostate biopsy
image, got market authorization by the United States Food and Drug Administration (FDA) [10]. It is de-
signed not to replace pathologists, but to bolster the confidence in diagnosis [1]. Another example of the
potential of carefully curated hospital quality data is the use of blood sample data combined with logis-
tic regression to detect cancer four years before conventional diagnosis [11]. Additionally, this example
showcases that exceptional performance does not necessarily require the newest Machine Learning model,
underscoring the importance of exploring classical approaches as well.
To the best of our knowledge, there is no FDA-approved model for lung cancer detection based on

imaging or laboratory values. Lung cancer research ranges from the design of nanoparticles for pulmonary
mRNA delivery and genome editing, to precision medicine for patients, to new ways of detecting lung
cancer [12, 13, 14]. Especially, with DLs success in imaging over the past decade, several methods have
been proposed. For instance, by using deep learning-based algorithms it is possible to detect lung cancer
from chest X-rays or Computed Tomography (CT) scans of the lungs—which are cross-sectional images—
to classify suspected lung cancer and lung nodules with very high accuracy [15, 16]. In addition, image
denoising models could be used in the future for patients undergoing CT scans. By exposing patients
to lower levels of radiation, resulting in noisier images, these models can effectively denoise the images,
thereby increasing patient safety while maintaining image quality [17]. This underscores the relevance of
extracting and translating findings from such general settings into clinical data.
All of these previously mentioned DL methods work for images, but what about tabular datasets such

as the one from the UHE? This type of dataset provides flexibility by accommodating many different types
of data, offers transparency through comprehensible representation, and facilitates seamless tracking of
variable changes over time. Furthermore, it offers several opportunities for exploration, including sur-
vival analysis, identification of similar patients, and predictive modeling of features within the dataset.
Especially when predicting survival, physicians often rely on their subjective intuition and interpretation,
which naturally limits accuracy and reproducibility [18]. Semi-parametric models such as the Cox pro-
portional hazards model are among the classical statistical approaches, but have certain limitations. For
example, they are unable to capture non-linear relationships between features and assume a constant ef-
fect of features over time. Other models which can capture non-linear relationships are Random Survival
Forests (RSFs) and Neural Networks (NNs). RSFs and Random Forests (RFs) have been successfully em-
ployed across domains such as for clinical risk prediction, and length of hospitalization prediction of lung
cancer patients [19, 20]. Furthermore, a wide range of NNs have been developed for survival analysis and
more generally time-to-event analysis. Prominent examples include models such as DeepSurv, DeepHit,
and MTLR, which have demonstrated successful applications [21, 22, 23]. For example, DeepSurv has been
effectively used for survival prediction of oral cancer patients [24]. Moreover, in the realm of multimodal
data encompassing data such as mRNA, miRNA, whole-slide images and clinical data, several methods
exist that leverage information across modalities for survival prediction. One notable example for such a
model is MultiSurv [18].
In summary, the use of clinical data is a large, growing and complex area of research that encompasses

a number of different models and methodologies and offers many research opportunities. However, it
is important to note that there is no single universal approach, as all models have their advantages and
disadvantages depending on the task at hand.
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2 Background

This Chapter focuses on introducing the mathematical principles required for building the models created
in Chapter 3. The aim is for the reader to gain a thorough understanding of state-of-the-art techniques in
practice as well as a solid understanding of the mathematical principles underlying them. After a general
introduction to DL, its applications, and the format in which data is available, the following discussion
presents a simple form of NNswith a detailedmathematical derivation on the training process of one. After
laying the foundation for creating arbitrarily complex NNs, we derive Graph Neural Networks (GNNs),
which in turn rely on NNs. Next, we introduce Optimal Transport (OT), a powerful tool in combination
with GNNs, as shown by Tong et al. [25]. We then proceed with an introduction to survival analysis models
and explainability.

2.1 Deep Learning

Although Deep Learning is a specific type of Machine Learning, it covers a wide variety of domains from
recommender systems, Natural Language Processing (NLP), computer vision, to reinforcement learning,
to name a few. Applications derived from these areas can, for example, recommend the next movie based
on your interests, be a question and answer engine, create realistic looking images that don’t exist, or learn
to play Atari games better than human players do [26, 27, 28, 29].
In general, there are two training settings for DL, the supervised setting, where each data point 𝑋𝑖 has

K features and already comes with a label 𝑦𝑖 , and the unsupervised case where no labels are given. In the
classical supervised setting, DL uses a dataset D with a total of N samples 𝐷 = {(𝑋𝑖 , 𝑦𝑖) | 𝑋𝑖 ∈ ℝ𝐾 , 𝑦𝑖 ∈
ℝ, 1 ≤ 𝑖 ≤ 𝑁 } and randomly splits it into a train, validation and test set. Usually, the dataset is first
split into a train and test set with a ratio of 80% and 20%, respectively. In the following, the train set
is randomly partitioned into two subsets, one of which is used for training and another, smaller one for
validation. Training means that the models internal parameters are refined iteratively for each sample in
the train set until a certain criterion, calculated over the validation set, is satisfied. The test set is only
used for the final evaluation. This approach is very powerful because it provides an approximation of
the models accuracy on new, unseen data, assuming that the train, validation and test set have the same
underlying distribution. Thus, it is possible to infer 𝑦new from 𝑋new. The unsupervised case works in a
similar way, except that now there are no labels 𝑦𝑖 for the data.

2.1.1 Fundamentals and Techniques

The notation used in this work follows the conventions described in Higham and Higham [30]. The XOR
dataset (see Figure 2.1) illustrates the capabilities of Multilayer Perceptrons (MLPs), a class of NNs, since
they can handle nonlinear data dependencies, unlike traditional linear classifiers [31, 32]. TheMLP approx-
imates a target function 𝑓 ∗(𝑋 ) = 𝑦 via a function 𝑓 (𝑋,𝑊 ) = 𝑦. In total, an MLP consists of 𝑙 ∈ (1, . . . , 𝐿)
layers, each of which contains a different number of nodes 𝑛 [𝑙 ] , also referred to as neurons.
The first layer is known as the input layer, followed by arbitrarily many hidden layers, and the last

layer is the output layer. As input in the example depicted in Figure 2.2, the MLP takes 𝑋𝑖 ∈ ℝ2, which
corresponds to the coordinates 𝑥1 and 𝑥2, and then applies an affine transformation described by a matrix
of weights𝑊 and a scalar bias term 𝑏 to the input, followed by a nonlinear activation function 𝜎 , and
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Figure 2.1 The XOR dataset is not linearly separable. It consists of two classes, which are depicted in blue (circles)
and orange (crosses). It becomes linearly separable when the data points are transformed using a nonlinear function.
Idea for Figure taken from Günnemann [32].

passes the result to the next layer l. One possible implementation of this network is shown in Figure 2.2,
which defines 𝑓 (𝑋,𝑊 ) as

𝑓 (𝑥,𝑊 ) =𝑊 [2]𝑎 [1] + 𝑏 [2]

=𝑊 [2]𝜎0
(
𝑊 [1]𝑎 [0] + 𝑏 [1]

)
+ 𝑏 [2]

=

[
𝑤
[2]
00 𝑤

[2]
10

]
× 𝜎0

([
𝑤
[1]
00 𝑤

[1]
10

𝑤
[1]
01 𝑤

[1]
11

] [
𝑥1
𝑥2

]
+

[
𝑏
[1]
0
𝑏
[1]
1

])
+ 𝑏 [2]0 ,

(2.1)

where𝑤 [𝑙 ]
𝑖 𝑗
∈ ℝ describes the weight assigned between neuron i and neuron j in layer l, and 𝑏 [1]0 , 𝑏

[1]
1 ∈ ℝ

the biases.

Figure 2.2Multilayer Perceptron with one hidden layer. It takes two values 𝑥1 and 𝑥2 as input, transforms them via
weights W, biases b and a nonlinear activation function 𝜎 into a hidden representation 𝑎, which is then used to for
prediction. Idea for Figure taken from Goodfellow, Bengio, and Courville [31].
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Figure 2.3 Visualized first layer output for the trained MLP (see Figure 2.2) of the input dataset (see Figure 2.1) after
applying the activation function. Idea for Figure taken from Günnemann [32].

The MLP’s output 𝑦pred is iteratively refined by updating the weights and biases during training where
the network attempts to minimize a predefined loss function for each sample in the training set.
After refining the weights over several epochs—where an epoch is defined as a training iteration that

includes the entire train set, using each element once—it can be observed how the nonlinear activation
function in the first layer transforms the coordinates of the XOR dataset into a space in which the data
becomes linearly separable (see Figure 2.3).

Neural Networks

Neural Networks (NNs)—of which MLPs are a subclass—consist of multiple hidden layers containing an
arbitrary amount of neurons. These networks can be customized with various modifications, such as non-
fully connected neurons, shared weights between neurons, or the use of different activation functions
within the NN. Furthermore, they provide state-of-the-art results in many areas such as computer vision
or Natural Language Processing. Prominent examples of NN architectures include Convolutional Neural
Networks, Recurrent Neural Networks, and Transformers.
In general, NNs are flexible models that can learn non-linear relationships, have the ability to generalize

to new unseen data, and can also be scaled efficiently by training on GPUs.

Activation functions

The activation function 𝜎 is usually applied element-wise and introduces non-linearity to the output of
the nodes [31]. Hence, it is capable of capturing complex patterns within the data. It takes the input and
transforms it to a predefined range that depends on the activation function used.
Four commonly used activation functions are: Sigmoid activation, ReLU, LeakyReLU and ELU, as illus-

trated in Figure 2.4. Their usage depends on the specific problem, as each of them brings its own advantages
and disadvantages. ReLU, for example, is computationally very efficient, but can suffer from the problem
of dying ReLU, in which the output is set to zero for some neurons [33]. Leaky ReLU circumvents the
latter by introducing an additional scalar hyperparameter 𝑎 which avoids values smaller than zero from
being entirely zero. The ELU is similar to the Leaky ReLU, but instead of having a fixed negative slope
for 𝑥 ≤ 0, it decays exponentially, controlled by a hyperparameter 𝛼 , typically set to 1. The sigmoid acti-
vations is computationally more complex and susceptible to vanishing or exploding gradients during NN
optimization. However, since its output range is fixed, the result of the final layer can be rescaled to lie
between zero and one, and can therefore be used for functions that require a probability as input, such as
loss functions for classification.
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Figure 2.4 Visualization of various nonlinear activation functions commonly used in Neural Networks.

Loss function

The Loss function L, also known as cost function, serves a crucial role in the training process of MLPs,
and more generally for all NNs. It provides a measure of the quality of the model’s prediction compared to
the ground truth. Different loss functions can be used depending on the objective. In the following, two
popular choices are discussed. In the case of the XOR example with N observations, the Mean Squared
Error (MSE) loss function is used, where

L =
1
𝑁

𝑁∑︁
𝑖=1
| |𝑦𝑖 − 𝑓 (𝑋𝑖 ,𝑊 ) | |22 =

1
𝑁

𝑁∑︁
𝑖=1
| |𝑦𝑖 − 𝑦pred𝑖 | |

2
2. (2.2)

In this case, due to the quadratic constraint, the further the network’s prediction deviates from the actual
solution, the more this error is penalized, and vice versa.
Given a classification task such as predicting whether a skin lesion is benign or not, the binary cross

entropy loss functions with 𝑦𝑖 ∈ {0, 1} yields

L =

𝑁∑︁
𝑖=1
−(𝑦𝑖 log(𝑝𝑖,𝑦𝑖 ) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖,𝑦𝑖 )), (2.3)

where 𝑝𝑖,𝑦𝑖 is the networks’ predicted probability of 𝑋𝑖 belonging to class 𝑦𝑖 . For the multi-class case with
𝑦𝑖 ∈ {1, . . . , 𝑆} for 𝑆 ∈ ℕ, the formulation of L is adjusted to

L = −
𝑁∑︁
𝑖=1

log
exp(𝑝𝑖,𝑦𝑖 )∑

𝑠∈𝑆
exp(𝑝𝑖,𝑠)

, (2.4)

where 𝑝𝑖,𝑠 represents the predicted probability of observation 𝑖 belonging to class s.
Since the loss function is fully differentiable, the task of finding the optimal NN boils down to an opti-

mization problem. Thus, the objective is to find the parameters 𝜃 that correspond to the global minimum
of L(𝜃 ):

Θ∗ = argmin
Θ
L(Θ) . (2.5)
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Gradient Descent Techniques

Since the solution for high-dimensional optimization problems is often not as easy to compute, other
methods are required to find the global minimum. One of these methods is gradient descent. The goal of
gradient descent for NNs is to iteratively adapt the weights and biases to achieve the lowest possible loss.
Because the gradient of a function indicates the direction of steepest ascent, it can be utilized to take a
step of size 𝜏 in the opposite direction, that of steepest descent. There are several methods for gradient
descent, two of which are very well known:

1. The gradient of the entire training data is calculated, which leads to a more accurate optimization,
but involves a high computational overhead. This is described by the vanilla-gradient descent, which
is represented as follows

Θ← Θ − 𝜏∇ΘL(𝑋,𝑦,Θ), (2.6)

where ∇ΘL is the gradient ∇ of the models loss L with respect to its internal parameters Θ.

2. The second possibility is to work only with a randomly selected subset S—also called a mini-batch—
of the training data, which reduces computational cost but adds more noise to the update step. This
process is known as stochastic gradient descent

Θ← Θ − 𝜏

|S|
∑︁
𝑗∈S
∇ΘL 𝑗 (𝑋 𝑗 , 𝑦 𝑗 ,Θ) . (2.7)

The parameters Θ𝑡 are updated iteratively for multiple epochs, where an epoch is defined such that
every point in the training dataset was part of a mini-batch during training [34].

The step size 𝜏 is a positive scalar and also called the learning rate. By moving in the direction of the
steepest descent, a local minimum is approached after a certain number of iterations. Gradient descent
depends strongly on the initial value of the learning rate, i.e., if 𝜏 is chosen to small, the algorithm takes
significantly longer to converge, may get stuck at saddle points or fail to escape a local minimum [31].
However, if the learning rate is too high, the global minimum might not be reached because it is overshot
or oscillates above the perfect solution.
These different and well known problems are presented in Figure 2.4 for different learning rates 𝜏𝑖 and

initial positionsA, B, C andD. As Figure 2.5 shows, it is very important to choose and adapt the learning rate
correctly. Thus, there are learning rate schedules to adjust 𝜏 iteratively, along with alternative algorithms
that dynamically adjust the learning rate. The latter adapt the learning rate based on statistical information
of past gradients to enable faster and more robust convergence. One of these algorithms is the Adam

Figure 2.5 Visualization of the importance of appropriate learning rates 𝜏𝑖 for different starting points A,B,C and D.
For low values of 𝜏𝑖 , the gradient descent algorithm takes longer to converge and is unable to escape local minima
which is the case for A and B. C displays the problem when the learning rate is too large, as C then starts to oscillate
above the minimum and thus cannot reach it. D is located in a local minimum, but its learning rate is so low that it
is unable to escape it. The green line plots the optimal way for point A. Idea for Figure taken from Günnemann [32]
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algorithm, which calculates the gradient for every datapoint and calculates the mean 𝑚 and variance 𝑣
over the entire batch, followed by the update

𝑚 ← 𝛽1𝑚 + (1 − 𝛽1)
1
|S|

∑︁
𝑗∈S
∇ΘL(𝑋 𝑗 , 𝑦 𝑗 ),Θ),

𝑣 ← 𝛽2𝑣 + (1 − 𝛽2)
1
|S|

∑︁
𝑗∈S
(∇ΘL(𝑋 𝑗 , 𝑦 𝑗 ,Θ))2,

𝑚′ ← 𝑚

1 − 𝛽𝑡1
,

𝑣 ′ ← 𝑣

1 − 𝛽𝑡2
,

Θ← Θ − 𝜏
√
𝑣
′ + 𝜁

𝑚′,

(2.8)

where 𝛽1 and 𝛽2 are hyperparameters controlling the decay rates of𝑚 and 𝑣 , 𝜏 is the learning rate, 𝜁 is a
small positive scalar added for numerical stabilization [31, 35].
This provides almost all the necessary building blocks to train a NN of arbitrary size and connected

components by replacing Θ with the weights and biases specific to the NN architecture. However, the
only missing element is the gradient ∇𝑊,𝑏 of the loss function, which is derived in the following.

Backpropagation

Since all previously defined modules are differentiable and a composition of differentiable functions is
also differentiable, the gradient of the loss function can be calculated using the chain rule. If the Neural
Network is not fully connected, the gradient is only computed and propagated for connections that do
exist. Thus, all the necessary tools are available to train a Neural Network end-to-end.

2.1.2 Regularization Strategies

In DL, the generalization ability of a model during training is assessed by evaluating the loss on the valida-
tion set for each epoch. During this evaluation, the validation data is passed through, for example, an MLP
and the loss is computed without updating the weights of the model. If the validation loss increases after
multiple epochs of training, this is an indication that the model is overfitting and a sign to stop the train-
ing. Overfitting occurs when the model begins to memorize noise in the training data and loses its ability
to generalise to new, unseen data. To mitigate this problem, various regularization techniques have been
proposed, such as 𝐿1 and 𝐿2 regularization, dropout, Batch Normalization (BN), early stopping, data aug-
mentation and many more. In the following we describe the regularization methods, which were utilized
in the context of this work.

Dropout

Dropout is a regularization technique for NNs, which for every training step, removes a random pre-
specified percentage of neurons along with its incoming and outgoing connections [36]. This reduces
overfitting by preventing the model from relying too heavily on single neurons.

L1 and L2 Regularization

These techniques adapt the loss function by adding a regularization term that depends on the Neural
Network’s weights, which helps to control overfitting. 𝐿2 regularization incorporates eachweights squared
value, denoted by ∥𝑊 ∥22, over the entire NN, where ∥ · ∥22 is the 𝐿2 norm. This yields the modified loss
function:

Lnew = L + 𝜆∥𝑊 ∥22. (2.9)
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In this equation, 𝜆 is the regularization strength, that controls the models complexity. 𝐿2 regularization
encourages the NN to have evenly distributed weight values, thereby preventing individual neurons from
having excessively high values and thus a large influence. Hence, reducing model complexity and leading
to improved generalization [31]. On the other hand, 𝐿1 regularization plays a similar role as 𝐿2 regulariza-
tion, but encourages weights to be zero [37]. It can be represented as:

L𝑛𝑒𝑤 = L + 𝜆∥𝑊 ∥1, (2.10)

where ∥𝑊 ∥1 is the 𝐿1 norm, which corresponds to the sum of the absolute values of each weight.

Batch Normalization

The introduction of Batch Normalization by Ioffe and Szegedy [38] in 2015 has significantly impacted
NNs by fostering more stable gradient flow during training [39]. This technique makes the optimization
landscape smoother and thus helps the training process [40]. It as an adaptive reparametrization method
that normalizes the activation vector and thereby guarantees faster convergence [31]. For normalization
it uses the first and second moments 𝜇 and 𝜓 , which are computed layer by layer during training, based
on the activation vector 𝑎 of all elements 𝑛 in a batch:

𝜇 [𝑙 ] =
1
𝑛

∑︁
𝑖

𝑎
[𝑙 ]
𝑖
,

𝜓 2[𝑙 ] =
1
𝑛

∑︁
𝑖

(𝑎 [𝑙 ]
𝑖
− 𝜇 [𝑙 ])2.

(2.11)

Subsequently, for each neuron in every layer, its normalized activation 𝑎 [𝑙 ]
𝑖,𝑛𝑜𝑟𝑚

is obtained by

𝑎
[𝑙 ]
𝑖,𝑛𝑜𝑟𝑚

=
𝑎
[𝑙 ]
𝑖
− 𝜇 [𝑙 ]√︁

𝜓 2[𝑙 ] − 𝜁
, (2.12)

where 𝜁 is a constant used for numerical stability. Finally, the above results yield the neurons output at
layer 𝑙

𝑎
[𝑙 ]
𝑖,𝑓 𝑖𝑛𝑎𝑙

= 𝛾 [𝑙 ]𝑎 [𝑙 ]
𝑖,𝑛𝑜𝑟𝑚

+ 𝛽 [𝑙 ], (2.13)

where 𝛾 ∈ ℝ𝐿 and 𝛽 ∈ ℝ𝐿 denote layer specific trainable parameters that allow the model to learn the
optimal distribution for each hidden layer [39].

2.1.3 Deep Learning Frameworks

Part of Deep Learning’s success is due to efficient implementation of vector, matrix and tensor operations
on GPU. Since their architecture makes them many times faster for this task than CPUs especially for
matrix and tensor calculations, more complex algorithms can be modeled. There are several packages in
Python that can offload operations directly to the GPU and provide the means to create DL algorithms.
The two most popular are Tensorflow from Google with its high level API Keras and Pytorch from Meta.
In the following work, Pytorch is used exclusively.
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2.2 Deep Learning on Graphs

Graphs encode rich information that is everywhere in our world, ranging from social networks to struc-
tural information to knowledge graphs. However, extracting as well as encoding that information presents
several challenges for researchers. Some of them include the heterogeneity of graphs, the irregularity of
their structure, scalability for large graphs, robustness, and over-smoothing [34, 41]. Nonetheless, they
have been used with great success in a variety of fields, ranging from chemistry, biology, and physics to
recommendation and social sciences—from tasks such as predicting protein structures to recommending
the next movie [42, 43, 44]. The purpose of this Chapter is to provide an overview of the intrinsic structure
required to use graphs to encode information and to perform Deep Learning on them.

2.2.1 Notation and Preliminaries

This introduction largely follows Zhang, Cui, and Zhu [41] and Veličković [45]. Let G = (V, E) be a graph,
thenV is the set of its vertices {𝑢1, ..., 𝑢𝑁 } and E ⊆ V ×V is the set of 𝑀 = |E | edges between vertices.
The term vertex and node is equivalent and is used interchangeably. A graph can either be undirected, in
which case (𝑢, 𝑣) ∈ E ⇔ (𝑣,𝑢) ∈ E or directed, where (𝑢, 𝑣) ∈ E are ordered pairs describing a direct edge
from node u to node v. In the remainder of this work, it is assumed that undirected graphs are used unless
otherwise stated. We define the adjacency matrix A ∈ ℝ|V |× |V | as a square matrix, where each entry 𝑎𝑢𝑣
is set to 1 if node u has an edge connecting with node v and otherwise 0:

𝑎𝑢𝑣 =

{
1 if (𝑢, 𝑣) ∈ E,
0 if (𝑢, 𝑣) ∉ E .

(2.14)

Several extensions to the original graph representation A have been proposed which encode additional
information such as weights or temporal information of nodes or edges [34]. Although this extended
representation of A may be useful to fully encode the graph structure, for the remainder of this paper it
is assumed that A is defined as in Equation 2.14 unless otherwise stated. Furthermore, each 𝑢 ∈ V can be
initialized with a feature vector 𝑋𝑢 ∈ ℝ𝑚 , which forms the node feature matrix 𝑋 ∈ ℝ|V |×𝑚 :

𝑋 = [𝑋1, 𝑋2, . . . , 𝑋 |V |]⊤. (2.15)

Additionally, the definitions above impose a node ordering and thus permutation invariance and equivari-
ance have to be satisfied for any permutation matrix 𝑃 and functions 𝑔 and 𝐻 defined as

𝑔(𝑃𝑋, 𝑃𝐴𝑃⊤) = 𝑔(𝑋,𝐴) (𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒),
𝐻 (𝑃𝑋, 𝑃𝐴𝑃⊤) = 𝑃𝐻 (𝑋,𝐴) (𝐸𝑞𝑢𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) .

(2.16)

This guarantees that even if the nodes and edges are permuted the result remains the same. All graph
architectures must satisfy these conditions in order to perform Deep Learning on them. In addition, each
node in a graph can aggregate information about its neighbors, forming the so-called neighborhood N .
The 1-step neighbors of node u, N𝑢 , are defined by:

N𝑢 = {𝑣 | (𝑢, 𝑣) ∈ E ∨ (𝑣,𝑢) ∈ E} (2.17)

and the multiset of all neighbourhood features, 𝑋N𝑢 :

𝑋N𝑢 = {{𝑋𝑣 | 𝑣 ∈ N𝑢}}. (2.18)

Another important property of a graph is its degree matrix 𝐷 ∈ ℕ |V |× |V | which encodes how many
incoming and outcoming edges exist for every node. Hence, 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . The Laplacian matrix, 𝐿,

defined as 𝐿 = 𝐷 − 𝐴𝑤 , where 𝐴𝑤 is a weighted adjacency matrix is particularly effective for capturing
connectivity structure of a graph. It is commonly used in techniques such as spectral clustering, which
aims to partition a graph into subsets in a way that minimizes the number of edges between different parts
[34].
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2.2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are of particular interest for the dataset provided by UHE (see Section 4.1)
with outcome variables such as “treatment failure”. This dataset can be used to create a graph where pa-
tients are encoded as nodes and edges are created based on patient-patient similarity (see Section 3.2.1). By
applying GNNs to this patient-patient similarity graph, the time to treatment failure can be predicted. This
approach offers several advantages, such as mitigating bias and leveraging knowledge within communi-
ties by considering only a patient’s k-step neighbors for its prediction. Ultimately, this can help physicians
make more informed healthcare decisions, such as changing treatment if early treatment failure is pre-
dicted.
Now that the basic concepts of graphs are defined, the necessary tools are available to explore GNNs in

the following. We adopt the notation introduced in Xu et al. [46]. One of the paradigms that have made
Graph Neural Networks so successful is what is known as message passing, in which a node incorporates
features from its neighboring nodes. The aggregation is independent of the size of the graph, which makes
GNNs highly adaptable in real-world scenarios [34]. Each node first learns about the features of other nodes
in its neighborhood N𝑢 and aggregates this information into its hidden representation ℎ [𝑙 ]𝑢 . Hence, after
k-iterations of this aggregation process, a node captures the structural information of its k-hop network
neighborhood (see Figure 2.6). Formally, this can be written as

𝑎
[𝑙 ]
𝑢 = AGGREGATE[𝑙 ]

({
ℎ
[𝑙−1]
𝑣 : 𝑣 ∈ N (𝑢)

})
, ℎ

[𝑙 ]
𝑢 = COMBINE[𝑙 ]

(
ℎ
[𝑙−1]
𝑢 , 𝑎

[𝑙 ]
𝑢

)
, (2.19)

where ℎ [𝑙 ]𝑢 is the feature vector of node u after the l-th iteration of the aggregation process. The choice of
AGGREGATE(·) and COMBINE(·) functions is still an active area of research because there is a wide and
growing variety of them. The type of the aggregation function leads to different architectures of GNNs.
Most can be classified into three categories according to Bronstein et al. [47]: convolutional, attentional
and message-passing.
Before delving deeper into the use of different aggregation functions in layer depth 𝑙 ≥ 1, the first layer

𝑙 = 0 is instantiated as
ℎ
[0]
𝑢 = 𝑋𝑢 . (2.20)

It is important to note, that the initialization of the first layer may differ across GNNs implementations. In
the following subsection different GNN variants are explored as described in Dwivedi et al. [42] and Xu
et al. [46].

Figure 2.6High level example of amessage passing framework for a single node𝑢. From layer l to layer l+1 of a GNN,
u updates its hidden presentation ℎ [𝑙+1]𝑢 with features from its neighboring nodes using an aggregation function 𝜙 , as
indicated by the orange lines. In practice, for each layer, each node updates its hidden representation with features
from its neighbourhood N separately. Idea for Figure taken from Günnemann [34] and Dwivedi et al. [42].
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs) combine the AGGREGATE and COMBINE steps by using element-
wise mean pooling of the hidden features ℎ [𝑙+1]𝑢 of nodes in combination with a learnable matrix W:

ℎ
[𝑙 ]
𝑢 = ReLU

(
𝑊 ·MEAN

{
ℎ
[𝑙−1]
𝑣 ,∀𝑣 ∈ N (𝑢) ∪ {𝑢}

})
. (2.21)

Graph Attention Networks

The main aspect that distinguishes Graph Attention Networks (GATs) from models such as GCNs is that it
uses dynamic weights 𝑒𝑘𝑙𝑢𝑣 , also known as attention coefficients, instead of static weights. The idea behind
this is that neighbors have different importance independent of their degree [48]. The attentionweights 𝑒𝑘𝑙𝑢𝑣
can then be learned by a NN. The network employs a multi-headed attention architecture with K heads
to enhance its learning capacity, which is inspired by the transformer architecture. Therefore a node u
updates its hidden representation for layer 𝑙 by aggregating information from all its neighboring nodes in
combination with learnable attention coefficients 𝑒𝑘𝑙𝑢𝑣 and learnable weight matrices𝑊 𝑘,𝑙 , defined as

ℎ
[𝑙+1]
𝑢 = CONCAT𝐾

𝑘=1

(
ELU

( ∑︁
𝑣∈N𝑢

𝑒𝑘,𝑙𝑢𝑣𝑊
𝑘,𝑙ℎ
[𝑙 ]
𝑢

))
, (2.22)

where the result of all K attention heads is then concatenated. For each head the attention coefficients 𝑒𝑘𝑙𝑢𝑣
are set as:

𝑒𝑘,𝑙𝑢𝑣 =

exp
(
𝑒
𝑘,𝑙
𝑢𝑣

)
∑

𝑣′∈N𝑢
exp

(
𝑒
𝑘,𝑙
𝑢𝑣′

) and

𝑒𝑘,𝑙𝑢𝑣 =𝑊
𝑘,𝑙
att LeakyReLU

(
𝑊 𝑘,𝑙CONCAT

(
ℎ
[𝑙 ]
𝑢 , ℎ

[𝑙 ]
𝑣

))
.

(2.23)

Graph Isomorphism Networks

Graph Isomorphism Networks (GINs) are motivated by the Weisfeiler-Leman (WL) test for graph iso-
morphism [45, 46]. The WL-test iteratively aggregates the labels of the nodes and their neighbourhoods,
followed by a conversion to unique labels using perfect hashing. It is important to note that this test is
not conclusive and no cubic time algorithm exists yet to solve the graph isomorphism problem. The WL
algorithm resembles the GNNmessage passing framework. Its capability to differentiate graphs can be ad-
vantageous. GINs generalizes the WL test and thus reaches maximum discriminative performance among
certain GNNs [46]. The update equation for node u at layer 𝑙 is defined as:

ℎ
[𝑙 ]
𝑢 = MLP[𝑙 ] ©­«

(
1 + 𝜖 [𝑙 ]

)
· ℎ [𝑙−1]𝑢 +

∑︁
𝑣∈N(𝑢 )

ℎ
[𝑙−1]
𝑣

ª®¬ , (2.24)

where 𝜖 is a trainable scalar and determines the importance of the source node compared to its neighbors.

2.2.3 Prediction Objectives

GNNs are used for prediction in a variety of task, among them classification, link prediction, node and
graph classification, graph regression, cycle detection and other related fields [42]. The ensuing analysis
gives particular attention to two tasks, namely edge prediction and node classification.

Node classification

One goal of GNNs is to determine the class of a node. For example, in the context of patients represented as
nodes and medical conditions as edges, the objective is to identify the category to which a patient belongs,
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such as disease subtypes. First, several GNN layers are applied to the initial state of the graph so that nodes
learn to incorporate features of their neighbors (see Figure 2.7). This is followed by shared classification
function Γ, which independently obtains each nodes final hidden feature vectorℎ [𝐿]𝑢 as input and then uses
it for training and outputs its prediction for node u:

𝑧𝑢 = Γ(ℎ [𝐿]𝑢 ) . (2.25)

Link prediction

The inference of the existence or properties of an edge, referred to as 𝑒𝑢𝑣 , between entities such as drugs and
a disease is called edge or link prediction [45]. This is especially important for tasks such as patient-patient
similarity analysis, where identifying similar patients in a graph can help avoid costly medical procedures
and improve a patient’s overall outcome. As shown in Figure 2.7, after L GNN layers, a classification
function Γ takes the concatenated representation ℎ𝑢, ℎ𝑣 of the two nodes as input and predicts whether
the edge 𝑒𝑢𝑣 exists

𝑧𝑢𝑣 = Γ(ℎ [𝐿]𝑢 , ℎ
[𝐿]
𝑣 , 𝑒

[𝐿]
𝑢𝑣 ). (2.26)

Figure 2.7 Overview of the internal architecture and prediction tasks of Graph Neural Networks. First, the graph
G is encoded via its adjacency matrix A with node features ℎ [0]𝑢 and edge features 𝑒 [0]𝑢𝑣 . L layers of a GNN follow, in
which the hidden representations of nodes ℎ [𝐿]𝑢 are updated, as well as their edge weights 𝑒 [𝐿]𝑢𝑣 , if given. Finally, the
embeddings of the last layer ℎ [𝐿]𝑢 and 𝑒 [𝐿]𝑢𝑣 are passed to a function Γ for node classification or link prediction. Idea
for Figure taken from Dwivedi et al. [42] and Veličković [45].
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2.3 Optimal Transport

Optimal Transport (OT), in particular OT maps, provide a unique approach to finding patient-patient sim-
ilarities in a high-dimensional, noisy medical dataset such as the one in Section 4.1. The OT map identifies
the most efficient way to “transport” the features of one patient to another, thereby providing a notion of
similarity that can in turn be used to create edges for a patient-patient similarity graph (see Section 3.2.1).

A popular example motivating OT is the problem of a worker creating a certain shape from a pile of soil.
Assuming the worker wants to minimize the total effort to save both energy and time, they want to find the
“cheapest” way to move it. This can be mathematically modeled by considering the task of transforming
all of the mass of one probability distribution to another, while minimizing the cost of transportation. The
idea is to find an OT map that efficiently transports the mass from the source distribution to the target
distribution, while ensuring that no mass is left behind.
Additionally, OT provides a way to measure the similarity between sets of points or probability distri-

butions using the Wasserstein distance. It further aims to preserve the underlying geometry of the objects
being transported, which in turn is useful for tasks such as data alignment [49, 50]. OT solvers became
very attractive for Machine Learning as research made them more scalable [51], and has been an active
area ever since, ranging from applications for single-cell genomics [52], to knowledge graphs [25], to gen-
erative models such as Wasserstein-GANs [53] or OT maps [54]. In the proceeding sections, we lay out the
mathematical foundations of Optimal Transport, followed by a detailed explanation of how to solve for
the optimal transportation matrix 𝑃∗, and an introduction to generalized versions of Optimal Transport.

2.3.1 Theoretical Foundations

Notation and Preliminaries

Given two datasets {(X𝑖 , 𝑎𝑖)}𝑛𝑖=1 and {(X′𝑗 , 𝑏 𝑗 )}𝑚𝑗=1, where 𝑋 ∈ X ⊂ ℝ𝑑 and 𝑋 ′ ∈ X′ ⊂ ℝ𝑑 are two discrete
finite spaces, we want to compute the distance between them [55]. The probability masses are defined
as

∑𝑛
𝑖=1 𝑎𝑖 = 1 and

∑𝑚
𝑗=1 𝑏 𝑗 = 1. The Monge-Kantorovich relaxation for OT defines the set of possible

transport plans, also known as admissible couplings, between two discrete measures, 𝜇 =
∑𝑛
𝑖=1 𝑎𝑖𝛿𝑋𝑖

and
𝜈 =

∑𝑚
𝑗=1 𝑏 𝑗𝛿𝑋 𝑗

as
𝑈 (𝜇, 𝜈) = {𝑃 ∈ ℝ𝑛×𝑚 : 𝑃1𝑚 = 𝑎, 𝑃⊤1𝑛 = 𝑏}. (2.27)

1𝑛 denotes the n-dimensional vector of ones and 𝛿𝑋𝑖
is the Dirac distribution at position 𝑋𝑖 , defined as:

𝛿𝑋𝑖
=

{
1, 𝑋 = 𝑋𝑖 ,

0, otherwise.
(2.28)

Additionally, 𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑛)⊤ ∈ ℝ𝑛+ and 𝑏 = (𝑏1, 𝑏2, ..., 𝑏𝑚)⊤ ∈ ℝ𝑚+ , where a and b are also referred to as
left marginals and right marginals, respectively. This then gives the Kantorovich-OT formulation between
two discrete measures

𝑃∗ = min
𝑃∈𝑈 (𝜇,𝜈 )

⟨𝑃,𝐶⟩ = min
𝑃∈𝑈 (𝜇,𝜈 )

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑝𝑖 𝑗𝑐𝑖, 𝑗 , (2.29)

in which 𝑝𝑖 𝑗 denotes the transportation plan P from source i to target j and 𝑐𝑖 𝑗 represents the i,j-th element
of the cost matrix C.
This discrete formulation of OT can be expressed in terms of a Linear Program (LP) and be solved in

cubic time [56]. Minimizing the total cost ⟨𝑃,𝐶⟩ is subject to three constraints, the first requires that the
entirety of the source is transported away, the second condition implies that the target receives everything
it needs and the last inquires that the transportation plan must be positive [57].

Wasserstein Distance

TheWasserstein distance allows the comparison of non-overlapping singular distributions, such as discrete
ones, and the quantification of their spatial shift [58]. Unlike classical distances, which are not even defined
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for discrete distributions, theWasserstein distance allows ameaningful comparison. Defining the unit-cost
C as a matrix with entries 𝑐𝑖 𝑗 = 𝑑 (𝑋𝑖 , 𝑋 𝑗 )𝑝 and using the the Optimal Transport map 𝑃∗, the p-Wasserstein
distance is defined as

𝑊𝑝 (𝜇, 𝜈) = (⟨𝑃∗,𝐶⟩)1/𝑝 , (2.30)

wherein 𝑑 (·) is a distance function such as the 𝐿1 or 𝐿2 distance [56]. The special case for the𝑊1 distance
is also known as Earth Mover’s Distance (EMD), which is an important measure of the distance between
two probability distributions. It satisfies all the requirements of a metric space and thus defines a proper
distance, given that the underlying ground distance is metric and the two distributions have the same
integral [59]. In particular, the𝑊1 distance is typically more robust to the presence of noise and outliers
as compared to the𝑊2 distance. Returning to the original example of moving two piles of soil, EMD is
the minimum cost of converting one pile into the other using the Optimal Transport plan 𝑃∗, which is the
solution to Equation 2.29.

2.3.2 Algorithms

Entropy regularized optimal transport

Since the naïve method required 𝑂 (log(𝑛)𝑛3) operations, Cuturi et al. introduced entropic regularization
to perform the calculation in 𝑂 (𝑛2) [51]. Additionally, it was shown that some of the drawbacks of the
classical OT, such as non-unique solutions, increased computation time for a large number of bins, and
potential non-differentiability, are mitigated [57]. They add a relaxation term to the LP, thus enforcing less
sparsity with a hyperparameter 𝜖 , promoting a smoother problem and allowing faster computation:

argmin
𝑃
⟨𝑃,𝐶⟩ + 𝜖𝐻𝑃 ,

subject to 𝑃1𝑚 = 𝑎, 𝑃⊤1𝑛 = 𝑏, 𝑃 ≥ 0,
(2.31)

where 𝐻𝑝 is the entropic regularization term defined as

𝐻𝑝 =
∑︁
𝑖 𝑗

𝑝𝑖 𝑗 log𝑝𝑖 𝑗 . (2.32)

The condition of Equation 2.31 can then be incorporated by using Lagrange multipliers, resulting in the
following optimization problem

𝐿(𝑃, 𝛼, 𝛽) =
∑︁
𝑖 𝑗

𝑝𝑖 𝑗𝑐𝑖 𝑗 + 𝜖
∑︁
𝑖 𝑗

𝑝𝑖 𝑗 (log𝑝𝑖 𝑗 ) + 𝛼⊤(𝑃1𝑚 − 𝑎) + 𝛽⊤(𝑃⊤1𝑛 − 𝑏) . (2.33)

This can then be solved by taking the derivative with respect to 𝑃 , which results in an expression for it,
where only the Lagrangian multipliers are unknown, which is given by

𝑃 = diag
(
exp

(𝛼
𝜖

))
· exp

(
−𝐶
𝜖

)
· diag

(
exp

(
𝛽

𝜖

))
, (2.34)

with the division operator applied element-wise. This has the form

𝑃 = diag(𝑢) · 𝐾 · diag(𝑣), 𝐾 = exp
(
−𝐶
𝜖

)
, (2.35)

where the unknown scaling vectors 𝑢 ∈ ℝ𝑛+ and 𝑣 ∈ ℝ𝑚+ must satisfy the conservation of mass conditions
given by

𝑎 = 𝑢 ⊙ (𝐾𝑣) and 𝑏 = 𝑣 ⊙ (𝐾⊤𝑢), (2.36)
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Algorithm 1 Sinkhorn Algorithm
Input: Cost Matrix 𝐶 , Regularization Parameter 𝜖 , Marginal Constraint Vectors 𝑢, 𝑣
Output: Optimal Transport Plan 𝑃∗

1: procedure Sinkhorn(𝐶, 𝜖,𝑢, 𝑣)
2: 𝐾 ← exp(−𝐶

𝜖
)

3: 𝑣 ← 1𝑛
4: 𝑢 ← 1𝑚
5: repeat
6: 𝑢 ← 𝑎/(𝐾𝑣)
7: 𝑣 ← 𝑏/(𝐾𝑇𝑢)
8: until convergence
9: 𝑃∗ ← diag(𝑢) · 𝐾 · diag(𝑣)
10: end procedure

where ⊙ corresponds to the Hadamard product [58]. This can be solved by an algorithm called the
Sinkhorn algorithm. It first assumes an initialization for the Lagrange multipliers and then iteratively
updates these values as they depend on one another. When a stationary point is reached, the algorithm
stops.

Unbalanced Optimal Transport

Unbalanced Optimal Transport (UOT) is a robust extension of OT that extends the set of admissible cou-
plings 𝑈 (𝜇, 𝜈) so that the marginal constraints do not have to be satisfied [60]. This allows the algorithm
to discard irrelevant samples and not to transport them, thereby for example reducing the influence of
outliers. Formally, this can be written as

𝑃∗ = argmin
𝑃
⟨𝑃,𝐶⟩ + 𝜖 · 𝐻𝑝 + 𝜌1 · KL(𝑃1, 𝑎) + 𝜌2 · KL(𝑃⊤1, 𝑏),

subject to 𝑃 ≥ 0,
(2.37)

with KL being the Kullback-Leibler divergence and 𝜌 an unbalancedness parameter that controls the extent
to which the marginal constraint can be violated. The Kullback-Leibler divergence is defined as

KL(𝜇 | 𝜈) =


∑
𝑧∈𝑍

𝜇 (𝑧) log
(
𝜇 (𝑧 )
𝜈 (𝑧 )

)
− 𝜇 (𝑧) + 𝜈 (𝑧) if 𝜇, 𝜈 > 0,

∞ else,
(2.38)

where Z is a discrete and finite space, such as 𝑋 × 𝑋 ′. Divergences are a natural concept as a measure of
dissimilarity or discrepancy between probability distributions and often used in the context of OT.
In general, UOT provides a flexible approach that can handle imbalanced datasets which is often the case

in real-world scenarios. Similar to the Sinkhorn Algorithm, the unbalanced optimization problem can be
efficiently solvedwith the generalized Sinkhorn-Knoppmatrix scaling algorithm. For furthermathematical
details, please refer to the Chizat et al. [61], as it is beyond the scope of this work.
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2.4 Survival Analysis

Building models for survival analysis is paramount for gaining insight into disease progression, features
affecting survival likelihood (see Section 4.4.2), potential cures or medications for specific diseases, and
exposure risks. In particular, for data collected by hospitals, such as that provided by UHE (see Section
4.1), it is crucial to support healthcare decisions and medical intuitions with mathematical models. In the
following, the format of survival data is presented, succeeded by an introduction to various metrics used
for evaluation, and finally, a detailed mathematical overview of survival models is given.
Survival data consists of N individuals with d features encoded in matrix 𝑋 ∈ ℝ𝑁×𝑑 , a time-to-event

vector 𝑇 ∈ ℝ𝑁+ and an event indicator vector 𝐸 ∈ {0, 1}𝑁 . If 𝑒𝑖 equals zero, it indicates that the event did
not occur until time 𝑡𝑖 , and in this case the individual is considered to be right censored. For example,
𝑡𝑖 and 𝑒𝑖 could be the time an individual was in a medical trial and whether or not they survived, or the
duration of an individual’s specific treatment and if their outcome was successful or not.
Survival analysis typically uses two fundamental functions: the survival function 𝑆 (𝑡) and the hazard

function 𝜆(𝑡), defined as
𝑆 (𝑡) = 𝑃 (𝑡𝑖 > 𝑡) (2.39)

and
𝜆(𝑡) = lim

Δ𝑡→0

𝑆 (𝑡) − 𝑆 (𝑡 + Δ𝑡)
Δ𝑡 · 𝑆 (𝑡) . (2.40)

The function 𝑆 (𝑡) gives the probability that an individual will survive beyond time 𝑡 . In contrast, 𝜆(𝑡)
represents the probability that an individual will not survive a small time period Δ𝑡 , given that they have
already survived up to time 𝑡 .

Survival analysis requires special methods because standard approaches such as regression do not take
into account the fact that data is censored and usually discard the censored data and thus potentially
useful information [21]. Several survival methods exist, such as Kaplan-Meier estimators, Cox Proportional
Hazards Models (CPHs), Accelerated Failure Time Models, Random Survival Forests, and Deep Learning
based approaches. In addition to these methods and this particular type of data, specific metrics are needed
to evaluate them.

2.4.1 Metrics

Concordance Index

The Concordance Index, also called C-Index or Harrell’s Concordance Index, is a commonly used metric
for evaluating right censored data and can be seen as a generalization of the area under the ROC curve [62].
It is a measure of the extent to which the predicted risk scores accurately reflect the observed sequence
of events [63]. A C-index of 0.5 means the model performs as well as random prediction, and 1 represents
perfect prediction. It is obtained by considering all comparable pairs of individuals (i,j), i.e., which of them
(i or j) experienced an event first, and counting the number of concordant and discordant pairs, including
edge cases for time or risk score ties. A comparable pair (i,j) is considered to be concordant if the individual
with the higher assigned risk experienced the event earlier, otherwise it is discordant. It can be expressed
as

𝐶 =

𝑁∑
𝑖=1
𝛿𝑖

𝑁∑
𝑗=𝑖+1
[𝐼 (𝑡𝑖 < 𝑡 𝑗 ) (1 − 𝛿 𝑗 )𝐼 (𝑡𝑖 = 𝑡 𝑗 )] [𝐼 (𝑟𝑖 > 𝑟 𝑗 ) + 1

2 𝐼 (𝑟𝑖 = 𝑟 𝑗 )]

𝑁∑
𝑖=1
𝛿𝑖

𝑁∑
𝑗=𝑖+1
[𝐼 (𝑡𝑖 < 𝑡 𝑗 ) + (1 − 𝛿 𝑗 )𝐼 (𝑡𝑖 = 𝑡 𝑗 )]

, (2.41)

where 𝛿𝑖 is a binary variable that is one if the event for individual i occurred by 𝑡𝑖 , and zero if censoring
happened. Furthermore, 𝑡𝑖 is the survival time of individual i, 𝑟𝑖 is the predicted risk score, and 𝐼 (·) is an
indicator function that returns one if its argument is true and zero if not. The advantage of this measure
is that it incorporates information from censored patients even though the event of interest did not occur.
This is possible because survival to censoring is known. For example, one patient may outlive another
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even if censored, which is taken into account for the Concordance Index, providing insightful information
that may be lost in other metrics. If there are no ties in time and predicted risk, the equation simplifies to

𝐶 =

𝑁∑
𝑖=1
𝛿𝑖

𝑁∑
𝑗=𝑖+1

𝐼 (𝑡𝑖 < 𝑡 𝑗 )𝐼 (𝑟𝑖 > 𝑟 𝑗 )

𝑁∑
𝑖=1
𝛿𝑖

𝑁∑
𝑗=𝑖+1

𝐼 (𝑡𝑖 < 𝑡 𝑗 )
. (2.42)

Note that when a survival model produces multiple risk scores over time, the average risk for each indi-
vidual is used to calculate the C-Index.

Brier Score

The Brier Score (BS) is another metric commonly used in survival analysis. It is the extension of the
Mean Squared Error at time t for right censored survival data [64]. Because it is not a ranking metric
like the Concordance Index, it directly accounts for the models prediction and can thus be used for model
calibration and discrimination. The formula is expressed as

BS𝑐 (𝑡) = 1
𝑛

𝑁∑︁
𝑖=1

(
𝐼 (𝑡𝑖 ≤ 𝑡 ∧ 𝛿𝑖 = 1) (0 − 𝜋 (𝑡 |𝑋𝑖))

2

𝐺 (𝑡𝑖)
+ 𝐼 (𝑡𝑖 > 𝑡)

(1 − 𝜋 (𝑡 |𝑋𝑖))2

𝐺 (𝑡)

)
, (2.43)

where 𝑋𝑖 denotes the d dimensional feature vector of individual i, N is the total number of individuals,
𝜋 (𝑡 (𝑋𝑖)) represents the estimated likelihood of individual i remaining event-free up to time t, and 𝐺 (𝑡)
gives the inverse probability of the censoring weight that was determined by the Kaplan-Meier estimator
[65].
The Integrated Brier Score (IBS) is an important extension since it compresses the Brier Scores over

multiple time points into a single scalar value. Thus, by considering all time points from the minimum
time, 𝑡min, to the maximum time, 𝑡max, the IBS provides a holistic assessment of a model’s predictive power
throughout the time span of interest. It is defined as

IBS =

∫ 𝑡max

𝑡min

BS𝑐 (𝑡)𝑑𝜔 (𝑡), (2.44)

where 𝜔 (𝑡) = 𝑡/𝑡𝑚𝑎𝑥 is a weighting function [66]. Generally, a lower Integrated Brier Score suggests a
superior predictive performance of the model.

2.4.2 Survival Methods

Kaplan-Meier Estimator

One of the simplest models to estimate survival is the Kaplan-Meier estimator. It works by decomposing
T into smaller time steps and thus estimating the probability of survival till time 𝑡 by

𝑆 (𝑡) =
∏
𝑖:𝑡𝑖≤𝑡

𝑛𝑖 − 𝑑𝑖
𝑛𝑖

, (2.45)

where 𝑛𝑖 is the number of individuals at risk and 𝑑𝑖 the number of individuals for whom the event 𝑒𝑖
occurred at time 𝑡𝑖 . This method has several limitations. First, it does not take other features into account,
thus disregarding potentially helpful additional information [67]. Second, it assigns the same probability
of survival to all individuals at a given time, neglecting inherent differences between individuals. This
creates the need for more sophisticated models.
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Cox Proportional Hazards Model

The Cox Proportional Hazards Model (CPH) offers an approach which takes the features X as input, as
well as the events E and times T as defined in Section 2.4. It assumes that the hazard ratio for any two
individuals remain proportional and do not vary with time [67, 68]. This assumption can be evaluated with
statistical tests, and if a feature fails these tests, it can either be omitted or binned into smaller intervals to
reduce the violation. CPH are defined as follows

𝜆(𝑡 |𝑋𝑖) = 𝜆0(𝑡) exp(𝛽1𝑥𝑖1 + . . . + 𝛽𝑑𝑥𝑖𝑑 ) = 𝜆0(𝑡) exp(𝛽𝑋𝑖), (2.46)

where 𝜆0(𝑡) is the baseline hazard which is the same for all individuals, 𝑥𝑖𝑑 represents the scalar value
of feature d of patient i, and 𝛽 ∈ ℝ𝑑 are the estimates for the effect of each feature in the dataset. The
likelihood of the event being observed for subject i at time 𝑡𝑖 in the Cox Proportional Hazards Model can
be expressed as follows:

𝐿𝑖 (𝛽) =
𝜆(𝑡𝑖 |𝑋𝑖)∑

𝑗 :𝑇𝑗 ≥𝑇𝑖
𝜆(𝑡𝑖 |𝑋 𝑗 )

=
exp(𝛽𝑋𝑖)∑

𝑗 :𝑇𝑗 ≥𝑇𝑖
exp(𝛽𝑋 𝑗 )

. (2.47)

Assuming the individuals to be statistically independent, the coefficients can be estimated with an opti-
mization algorithm which maximizes the total partial log likelihood function over 𝛽 defined as

𝑙 (𝛽) =
∑︁
𝑖:𝐸𝑖=1

𝑙𝑜𝑔(𝐿𝑖 (𝛽)) =
∑︁
𝑖:𝐸𝑖=1

©­«𝛽 · 𝑋𝑖 − log
∑︁
𝑗 :𝑇𝑗 ≥𝑇𝑖

exp(𝛽𝑋 𝑗 )ª®¬ . (2.48)

Please refer to Efron [69] for the formula that includes time ties, as the formula presented here assumes
the absence of them for simplicity. The exponentials of these estimates are called the Hazard Ratios (HRs).
If 𝐻𝑅𝛽𝑖 > 1, this means that an individual has a higher risk of experiencing the event of interest, while if
𝐻𝑅𝛽𝑖 < 1 signifies the opposite scenario. For 𝐻𝑅𝛽𝑖 = 1, feature i has no effect on the outcome of interest.
Since this CPH build on the proportional hazards assumption, which can be restrictive in certain scenarios,
alternative methods have been proposed.

Tree Methods

In general, tree methods offer numerous beneficial properties such as scalability, robustness, interpretabil-
ity, handling of mixed data types, the ability to capture nonlinear interactions, and more. For survival anal-
ysis, there exist special tree methods that take censoring into account, such as Random Survival Forests
and XGBoost Survival Embeddings. Both are as ensemble methods, which can lead to better generaliza-
tion results and less overfitting, and unlike Neural Networks, they provide an inherent understanding of
feature importance. Furthermore, they are effective at handling high-dimensional input, which is common
for hospital datasets (see Section 4.1).
This discussion first introduces the concept of trees in general, followed by a detailed explanation of

tree methods specifically designed for survival analysis.

1. Decision Trees

Decision trees are hierarchical, nonlinear models that have been successfully used in many applications
for both classification and regression problems. They have many desirable features, such as scale indepen-
dence, interpretability, and work for numerical and categorical features. They consist of nodes, branches
and leaves. A node represents a test of a feature that partitions the dataset, and a branch represents the dif-
ferent results of that partitioning and the distribution of the samples in that particular region [70]. Since it
is too costly to determine the perfect tree, there are greedy top-down approaches that fit the tree, with the
help of special heuristics. Two of such heuristics are the Gini-Index (𝐿𝐺 ) and Entropy (𝐿𝐻 ). Both measure
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how pure the class distribution of a possible feature distribution is at a node to determine which feature
the node should split the dataset for. They are defined as follows:

𝐿𝐺 = 1 −
𝑐∑︁
𝑖=1

𝑝2𝑖 ,

𝐿𝐻 = −
𝑐∑︁
𝑖=1

𝑝𝑖 log2(𝑝𝑖) .
(2.49)

In these equations 𝑝𝑖 represents the proportion of samples belonging to class c for a specific node. In
addition, due to the recursive way of growing a decision tree, it is important to find an appropriate stopping
point. Thus, there exist several stopping criteria, such as reaching a maximum depth, achieving a certain
accuracy on the validation set, branch purity, andmore. The ends of a grown tree are referred to as terminal
nodes. As for the drawbacks, complex decision trees are prone to overfitting, which is usually addressed
by pruning the tree, and are high variance predictors, as small variations in the data can create a different
tree [71]. Figure 2.8 shows a Decision Tree (DT) that was constructed using a dataset of 120 samples, where
each sample has four features and belongs to one of three classes A, B and C. For this DT the Gini-Index
was used as a measure of impurity. A Gini-Index of zero indicates that the distribution in a branch is pure,
such as for the samples belonging to class A in the first split of this example.

Figure 2.8 An illustration of a Decision Tree using a dataset with four different features and three outcomes (A,B,
and C). Initially, the node is split based on the feature that maximizes the purity within the resulting branches. Using
a heuristic, such as the Gini-index, feature 4 is found to be optimal for splitting the data. This is achieved by placing
all data points whose feature 4 value is less than or equal to 0.8 in the left branch, while the remaining data points
are assigned to the right branch. This procedure is repeated for all leaves, until the branch distribution becomes pure
or meets a stopping criterion.
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2. Random Forests

Random Forests (RFs) are a combination of multiple Decision Trees that use bootstrapping and random
feature selection to build an ensemble of trees [72]. Hereby, the goal is to be robust against overfitting and
to make better predictions. They use a technique called bagging, bootstrap aggregation, where multiple
sub-datasets 𝐵𝑖 are created by sampling with replacement from the original dataset, on which the DTs are
then trained. This results in more uncorrelated trees than if the same dataset is used multiple times to
build the forest, as well as less overall variance of the model [73]. In addition, for each node in the tree, the
features used to evaluate split quality are randomly selected to reduce the correlation between the trees,
also known as feature bagging. To infer the label of a new data point, it is passed through the RF. The
final prediction is the most predicted class of all trees, or in the case of regression, the average. These
mentioned procedures are shown in Algorithm 2.

3. Random Survival Forests

Random Survival Forests (RSFs) extend the concept of Random Forests by incorporating right-censored
survival data [74]. In general, they follow the concepts developed for RFs, but have two major modifica-
tions: First, a new splitting rule to maximize survival differences between two branches, and second, a
new risk heuristic, the ensemble Cumulative Hazard Function (CHF) [75]. Algorithm 3 summarizes the
key points. Since the dataset contains censored data, the splitting rule has to account for the censoring.
To simplify this scenario let’s assume without loss of generality that we are at the root node and the data
is not bootstrapped and nominal [74]. We also define

{𝑡𝑖 | 𝑒𝑖 = 1, 𝑡𝑖 < 𝑡 𝑗 ,∀𝑖 < 𝑗} (2.50)

as them unique death times of all patients in the training dataset which are used in the calculation. Suppose
𝑥𝑖 𝑗 is feature j of individual i that we want to use to evaluate the quality of the split. This yields the left
and right children of the node, 𝐿 = {𝑋𝑖 | 𝑥𝑖 𝑗 ≤ 𝑐} and 𝑅 = {𝑋𝑖 | 𝑥𝑖 𝑗 > 𝑐}. Let

𝑌𝑗,𝐿 = #{𝑇𝑖 ≥ 𝑡 𝑗 , 𝑥𝑖 𝑗 ≤ 𝑐},
𝑌𝑗,𝑅 = #{𝑇𝑖 ≥ 𝑡 𝑗 , 𝑥𝑖 𝑗 > 𝑐},

(2.51)

represent the number of individuals who are alive at time 𝑡 𝑗 in the child nodes, and let 𝑑 𝑗,𝐿, 𝑑 𝑗,𝑅 denote the
number of events occurring in the respective leaves at time 𝑡 𝑗 . By defining the total number of individuals
alive in the parent node at time 𝑡 𝑗 as 𝑌𝑗 , and the total number of individuals at risk—where the event
occurred by time 𝑡 𝑗 as 𝑑 𝑗

𝑌𝑗 = 𝑌𝑗,𝐿 + 𝑌𝑗,𝑅,
𝑑 𝑗 = 𝑑 𝑗,𝐿 + 𝑑 𝑗,𝑅,

(2.52)

Algorithm 2 Random Forest
Input: Training Data 𝑋 , Number of Trees 𝑁𝑡 , Number of Randomly Selected Features 𝑁𝑓
Output: Classification or Regression Prediction
1: procedure RF(X, 𝑁𝑡 , 𝑁𝑓 )
2: Generate k bootstrapped datasets {𝐵𝑖 |𝑖 ∈ {1, . . . , 𝑘}} from X.
3: Train: Build 𝑁𝑡 trees using the bootstrapped datasets and 𝑁𝑓 randomly selected features at each

node.
4: Predict: Pass test data through random forest and aggregate (e.g., mean) results for regression or

count frequency for classification.
5: end procedure
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Algorithm 3 Random Survival Forest
Input: Training Data X, Number of Randomly Selected Features 𝑁𝑓
Output: Cumulative Hazard Function (CHF)
1: procedure RSF(X, 𝑁𝑓 )
2: Generate k bootstrapped datasets {𝐵𝑖 |𝑖 ∈ {1, . . . , 𝑘}} from X.
3: Grow tree for each 𝐵𝑖 . Randomly select 𝑁𝑓 features at each node. Split on feature that maximizes

survival difference between leaf nodes.
4: Grow tree to full size until terminal node contains a minimum of 𝑑0 > 0 unique deaths.
5: Calculate the CHF for each tree. Average to derive the ensemble CHF.
6: end procedure

the log-rank split statistic can be expressed as follows

𝐿(𝑋, 𝑐) =

𝑚∑
𝑗=1

(
𝑑 𝑗,𝐿 − 𝑌𝑗,𝐿

𝑑 𝑗

𝑌𝑗

)
√︄

𝑚∑
𝑗=1

𝑌𝑗,𝐿

𝑌𝑗

(
1 − 𝑌𝑗,𝐿

𝑌𝑗

) (
𝑌𝑗−𝑑 𝑗
𝑌𝑗−1

)
𝑑 𝑗

. (2.53)

The greater the magnitude of 𝐿(𝑋, 𝑐), the greater the survival difference between L and R, and thus, by
definition, the better the split. Consequently, the optimal split is determined by finding the feature 𝑋 ∗ and
the split-value 𝑐∗ that satisfies ∀𝑋, 𝑐 : |𝐿(𝑋 ∗, 𝑐∗) | ≥ |𝐿(𝑋, 𝑐) |. The ensemble CHF is estimated through the
following expression

𝐻ℎ (𝑡) =
∑︁
𝑡 𝑗,ℎ≤𝑡

𝑑 𝑗,ℎ

𝑌𝑗,ℎ
, (2.54)

where h represents terminal node to which an individual i is assigned when traversing the tree, and 𝑡 𝑗,ℎ
are the unique death times in h. The survival function estimate is given as

𝑆ℎ (𝑡) =
∏
𝑡 𝑗,ℎ≤𝑡

(
1 −

𝑑 𝑗,ℎ

𝑌𝑗,ℎ

)
. (2.55)

For prediction the RSF returns a mortality score which is defined as follows:

M𝑖 =

𝑚∑︁
𝑗=1

𝐻𝑖 (𝑡 𝑗 ). (2.56)

The mortality score is scaled by the number of events, whereM𝑖 > M 𝑗 represents a worse outcome for
individual i compared to j. For example, if individual 𝑖 has a mortality score of 200, this implies that if all
other individuals had the same covariates, an average of 200 events is expected. Since this value can be
interpreted as a measure of risk, it is used to calculate the Concordance Index.

4. Extreme Gradient Boosting

ExtremeGradient Boosting, also referred to as XGB, is a popular method known for its versatility in solving
various ML problems. It is a tree ensemble method that uses additive training, where Decision Trees are
built recursively, with subsequent trees improving on the predictions of previous trees [76]. Defining f to
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be the function that contains the tree’s structure and outputs the terminal leaf scores this can be formulated
as

𝑦
(0)
𝑖

= 𝑐

𝑦
(1)
𝑖

= 𝑓0(𝑋𝑖) = 𝑦 (0)𝑖 + 𝑓1(𝑋𝑖)
...

𝑦
(𝑚)
𝑖

=

𝑚∑︁
𝑘=1

𝑓𝑘 (𝑋𝑖) = 𝑦 (𝑚−1)𝑖
+ 𝑓𝑚 (𝑋𝑖),

(2.57)

with c being a random default prediction and 𝑦 (𝑘 )
𝑖

with 𝑘 ∈ {1, . . . ,𝑚} is the prediction of the k-th tree for
data point i. Furthermore, the optimization goal is to minimize the residuals with respect to the following
objective function:

obj(𝑚) =
𝑛∑︁
𝑖=1

𝑙 (𝑦𝑖 , 𝑦 (𝑚)𝑖
) + 𝛾T + 1

2𝜆
T∑︁
𝑗=1

𝑤2
𝑗 . (2.58)

In this equation 𝑙 (·, ·) is a custom loss function, which differs based on the objective at hand, T the number
of terminal nodes in the tree,𝛾 a factor encouraging pruning, 𝜆 the regularization strength and𝑤 𝑗 the score
vector associated with each terminal node. To accurately predict outcomes using survival data, special loss
functions have to be employed to account for censoring such as the one based on the CPH model. Since
there may not be a closed-form solution to this optimization problem, depending on the loss function, the
second-order Taylor expansion is generally used to approximate it.
Minimizing this approximation with respect to𝑤 yields

𝑤∗𝑗 = −
𝐺 𝑗

𝐻 𝑗 + 𝜆
, (2.59)

with 𝐺 𝑗 and 𝐻 𝑗 defined as
𝐺 𝑗 =

∑︁
𝑖∈𝐼 𝑗

𝑔𝑖 ,

𝐻 𝑗 =
∑︁
𝑖∈𝐼 𝑗

ℎ𝑖 ,
(2.60)

where 𝑔𝑖 is the first-order gradient of the loss function’s Taylor expansion, ℎ𝑖 is its second-order gradient,
and 𝐼 𝑗 denotes the set of indices of the data points assigned to the j-th leaf.
By then inserting 𝑤∗𝑗 in the approximation of the loss function and performing some mathematical

transformations, the best objective reduction obj∗ can be derived as

obj∗ = −12

T∑︁
𝑗=1

𝐺2
𝑗

𝐻 𝑗 + 𝜆
+ 𝛾T . (2.61)

In this formulation a smaller score indicates a better tree structure. Lastly, a splitting heuristic is defined
as follows:

Gain =
1
2

[
𝐺2
𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
− (𝐺𝐿 +𝐺𝑅)

2

𝐻𝐿 + 𝐻𝑅 + 𝜆

]
− 𝛾 . (2.62)

This heuristic encodes the scores of both the new leaves and its parent, along with an additional regular-
ization parameter 𝛾 that restricts the creation of new leaves if the gain is too small, implicitly pruning the
tree.

5. XGBSE

XGBoost Survival Embeddings (XGBSE) is an approach that uses Extreme Gradient Boosting (XGB) in
combinationwith a custom loss function accounting for censored data, to embed high-dimensional features
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in a lower-dimensional sparse space [77]. For each of the 𝐵 trees used by XGB, denoted as Tr𝑏∈𝐵 , a feature
vector of zeros is defined, whose length is equal to the number of terminal nodes. Then, when an individual
j with features 𝑋 𝑗 traverses through tree b and arrives at terminal node k, the k-th entry of the feature
vector for that tree is set to 1:

Tr𝑏,𝑗 = Tr𝑏 (𝑋 𝑗 ) = [0, 0, . . . , 1, 0, . . . , 0]⊤. (2.63)

Now, all these one-hot-encoded vectors are concatenated into a single array for individual j, defined as:

𝑋̃ 𝑗 = Concat(1,𝑇𝑟1, 𝑗 ,𝑇𝑟2, 𝑗 , . . . ,𝑇𝑟𝐵,𝑗 ) . (2.64)

Similarly, this is done for all other individuals in the dataset. These embeddings are utilized to predict the
𝑑𝑖/𝑛𝑖 term of the Kaplan-Meier formula with a logistic regression classifier. Therefore, this classifier is
adjusted to exclude individuals who were censored before time t. The resulting set

𝑁 𝑡
𝑢 = { 𝑗 | 𝑡 𝑗 > 𝑡 or 𝑒 𝑗 = 1}. (2.65)

is then used to train the classifier. Generally, this is done for multiple user-defined discrete time points,
where each time point has its own logistic regression classifier. Without loss of generality, let’s consider
the scenario for a single custom time point 𝑡 . Logistic regression calculates the probability 𝑃 of the binary
outcome given the input feature 𝑋̃

𝑃

(
𝑒 = 1

���� 𝑋̃ )
=

1
1 + exp−𝛽𝑇 𝑋̃

, (2.66)

where 𝛽 is the vector of coefficients to be estimated, with its length equal to the number of elements in
𝑋̃ . To find the optimal coefficients 𝛽∗, the negative log-likelihood must be minimized with respect to the
model parameters 𝛽 :

𝛽∗ = argmin
𝛽

∑︁
𝑗∈𝑁 𝑡

𝑢

[
−𝑒 𝑗 log 𝑃 (𝑒 𝑗 |𝑋̃ 𝑗 ) − (1 − 𝑒 𝑗 ) log(1 − 𝑃 (𝑒 𝑗 |𝑋̃ 𝑗 ))

]
. (2.67)

For multiple user-defined time points, a survival curve can be constructed for each individual by inputting
the corresponding feature vector 𝑋̃ 𝑗 into the respective trained logistic regression models. Note that there
is no closed-form solution for logistic regression, but 𝛽∗ can be computed using methods such as gradient
descent.
In general, XGBSE intends to use Extreme Gradient Boosted Trees to capture non-linearities and as a

noise filter, since splits are only made on features with predictive power. Ultimately, the goal is a more
robust and better calibrated estimate in combination with logistic regression. Furthermore, it can be ex-
tended to work with any classifier such as k-nearest-neighbors or even Neural Networks.

Deep Surv

Deep Surv is a method that models the interaction between patient features and treatment effectiveness in
order to provide personalized treatment recommendations and support physicians in the decision-making
process [21]. It has several desirable features, such as the fact that its internal Neural Network archi-
tecture can be adapted to each dataset, making it capable of capturing complex patterns. In addition,
transfer learning is a viable option, where the weights of a trained NN can be loaded into another NN to
potentially improve model performance on a different task. This is particularly interesting for the large
variety of datasets available in hospitals, such as the one provided by UHE. In general, the scalability due
to the efficient implementation on GPUs and the flexibility based on the architecture makes this method
an attractive option.
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It consists of a feed-forward NN with fully connected layers, non-linear activations and dropout. The
network produces a scalar output value ℎ̂Θ(·), which represents the predicted risk function. The loss
function is defined as the negative log partial likelihood

𝑙 (Θ) = − 1
𝑁𝐸=1

∑︁
𝑖:𝐸𝑖=1

(
ℎ̂Θ(𝑋𝑖) − log

∑︁
𝑗 :𝑇𝑖>𝑡

expℎ̂Θ (𝑋 𝑗 )
)
+ 𝜆 ∥Θ∥22 , (2.68)

where 𝑁𝐸=1 is the number of events that occurred, Θ are the network weights, and 𝜆 is the regularization
strength. Compared to Neural Networks in general, the main difference lies in the special loss function,
which is specifically designed for censoring. This in turn allows any NN architecture to be used. Hence,
the model is very flexible and adaptable.
Unlike the CPH where treatment interaction terms have to be explicitly added, it does not require pre-

specification of these to calculate the recommender function

rec𝑙,𝑘 = log
(
𝜆(𝑇 ;𝑋𝑖 |𝜏 = 𝑧)
𝜆(𝑇 ;𝑋𝑖 |𝜏 = 𝑘)

)
= ℎ̂Θ𝑧

(𝑋𝑖) − ℎ̂Θ𝑘
(𝑋𝑖), (2.69)

under the assumption that each treatment z of l treatment groups 𝜏 ∈ {0, 1, . . . , 𝑙 − 1} has an independent
hazard function with baseline hazard 𝜆0(𝑡)

𝜆(𝑡 ;𝑋𝑖 |𝜏 = 𝑧) = 𝜆0(𝑡) expℎ̂Θ𝑧 (𝑋𝑖 ) . (2.70)

This approach allows for personalized prediction by passing the patients feature vector through the Neural
Network first in treatment group i and then in treatment group j. In the case for the event variable being
death a 𝑟𝑒𝑐𝑖 𝑗 > 0 means that the patient has a higher risk-of-death in treatment group i compared to
treatment group j and vice versa.

2.5 Explainability

Machine Learning models often seem like enigmatic black boxes that produce impressive results but offer
little insight into how they got there. This lack of transparency raises several issues, including bias and ac-
countability. However, by demystifying the decision-making process, numerous benefits can be unlocked,
such as uncovering errors in the algorithm, detecting bias in the data, improving models, and even discov-
ering knowledge, which ultimately leads to greater accountability. In the following section, we delve into
one such method, namely Shapley values.

SHAP

SHapley Additive exPlanations (SHAP) is a game-theoretic method for explaining the output of mathe-
matical models [78]. The game is replicating the model’s outcome while the players are its features. SHAP
values or Shapley values quantify the contribution of each player (feature) to the overall outcome of the
game (model) [79]. It treats the model as a black box—so only the predictions are considered, nothing
else—and employs different tools for explainability. A Shapley value is a measure for the importance of
feature i given model 𝑓 , traditionally defined as

SHAP𝑖 =
∑︁

𝑆⊂𝐹\{𝑖 }

|𝑆 | ( |𝐹 | − |𝑆 | − 1)!
|𝐹 |!

[
𝑓𝑆∪{𝑖 } (𝑥𝑆∪{𝑖 }) − 𝑓𝑆 (𝑥𝑆 )

]
. (2.71)

In this equation F represents the set of all features, 𝑥𝑠 are the values of the input features in set S, and
| · | denotes the cardinality of a set. The Shapley value for feature i is a weighted sum over all possible
subsets S of features without i, considering the differences in predictions between the full feature set
𝑆 ∪ {𝑖} and the feature set 𝑆 alone. In essence, SHAP values are used to capture the marginal effect of a
feature to the model’s prediction as well as their interaction effects. Moreover, the SHAP python package



2 Background

28

provides a set of tools including visualizations for understanding individual and global feature importance,
based on combining many local explanations [80]. Numerous extensions with various trade-offs have been
proposed to work with a wide range of Machine Learning models, as well as approximations for faster
inference. Thus, this method enables fairness analysis, model debugging, feature interaction analysis,
model comparison and generally, interpretability.

In our work, we use the model-agnostic permutation explainer, which can compute Shapley values
for any model by systematically iterating over an entire permutation of the features in both the forward
and backward directions [81]. However, it should be noted that this approach is very expensive from a
computational point of view, since the number of permutations grows exponentially with the number of
features.
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3 Methods

This Chapter covers the detailed settings of the methods used and developed in this thesis and motivates
the design choices. The goal is to provide a thorough understanding of the implementation details and the
means to reproduce the results.

3.1 Survival Analysis

We compare the performance of three different algorithms commonly used in survival analysis to predict
an individuals’ risk over time: Random Survival Forests, DeepSurv and XGBSE (see Section 4.4.1). Further-
more, we train each survival model on two subsets for two different tasks: predicting the risk of treatment
failure and predicting the risk-of-death for an individual. The subsets are created from the dataset pro-
vided by UHE (see Section 4.1). One contains features up to a maximum of 400 missing values (N/As) and
the other one up to 2532 missing values. They are created by applying the preprocessing steps described
in Section 4.3.
The training set is used to perform a stratified 5-fold Cross Validation (CV). This CV procedure splits

the training data into five folds and ensures that the distribution of events in each fold is representative of
the entire dataset. One fold is then retained as the test set used for prediction, while the model is trained
on the remaining folds. This process is repeated until each of the five folds has been used once as a test
set. We use the prediction of the models to compute their average C-Index. Additionally, the average IBS
between the 10th and 90th percentile of the time-to-event variable𝑇train is calculated in 30-day increments.
In general, we use CV to get a more robust estimate and to validate our approach. After the 5-fold CV, we
train the models on the entire train set and evaluate their prediction performance on the hold-out test set.
We also set a seed to ensure reproducibility and that all models are trained on the same splits.
For all RSFs we set the maximum depth of the tree to 50, use 1000 tree estimators, fix the minimum

samples in a leaf to 5 and the minimum samples to split an internal node to 10. This is to reduce overfitting.
In the case of XGBSE, we use the default parameters of the package models, but set the maximum

depth of the tree to 50 as for RSF, and use a Cox objective function, optimizing for the negative partial
log-likelihood of the Cox Proportional Hazards, similar to that defined in Section 2.4.2.
Finally, we use DeepSurv with a NN consisting of 2 hidden layers with 32 neurons each and perform a

search for the learning rate that maximizes the C-Index. We then use this learning rate for training.

3.2 Unbalanced Optimal Transport on Clinical Data

We use UOT to measure the “similarity” between a group of patients to itself. Therefore, we create a cost
matrix C based on the euclidean distance between patients’ laboratory values. Its entries represent the
pairwise distances between patients. To constrain self-assignment an thus an identity matrix of 𝑃∗, we
add a high cost on the diagonal of C. We further set the regularization parameters for UOT to 𝜖 = 0.005
and 𝜌1, 𝜌2 = 0.05. In this way, we relax the problem to obtain a smoother solution and allow the algorithm
not to transport every sample, as described in Section 2.3.2. The marginals, represented as 𝑎 and 𝑏 are
set as uniform distribution on the number of patients. However, these distributions can be adjusted in
future studies if more emphasis needs to be placed on certain patients or areas. Finally, the UOT map 𝑃∗
is computed using the generalized Sinkhorn-Knopp algorithm for matrix scaling. An entry of 𝑃∗ indicates
how much mass from patient i is moved to patient j. We use the transported mass from patient i to patient
j as an indicator of how “similar” two patients are, assuming that the more mass transported, the greater
their similarity. By using unbalanced UOT instead of standard OT, we aim to relax the problem so that not
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all mass has to be transported. This creates the flexibility to exclude certain patients from transport if the
associated costs are too high, as measured by a large 𝐿2 distance.

To evaluate this method, we use the UOT embedding on a binary classification task. In addition, to
conduct a comprehensive assessment of the UOT embeddings’ significance on the classifier’s performance,
we train new classifiers using two additional datasets: the preprocessed laboratory values and the euclidean
distance matrix among patients. In particular, we compare the extent to which the rich information of the
laboratory values is preserved by 𝑃∗ and the euclidean embedding (𝐿2 embedding). For classification, we
use an MLP with two hidden layers, each comprising 64 neurons.

3.2.1 Patient-Patient Similarity Graphs with Unbalanced Optimal Transport

The UOT map 𝑃∗ defined in the previous Section can then be used to create a patient-patient similarity
graph. Each node corresponds to a patient, and the edges between patients are defined based on 𝑃∗. We
assign an edge between patient i and patient j if the transportedmass 𝑃∗𝑖 𝑗 is greater than a custom threshold.
For comparison, we create a second graph with edges between patients (i, j) if the euclidean distance of
their lab values is below a certain threshold, ensuring that a smaller 𝐿2 distance indicates a higher degree
of similarity. Furthermore, each node is initialized with the non-laboratory features (see Section 4.1) of the
corresponding patient.
Generally, by using graphs, we aim to leverage knowledge within communities to make a tailored pre-

diction for each individual. In this way, we aim to mitigate bias by considering only a small neighborhood
of similar patients for tasks such as node prediction. Additionally, the regularization parameters of UOT
enable us to tune the sparsity of the solution, which in turn can yield faster training on graphs. Moreover,
this approach can be considered an unsupervised method for detecting edges within a dataset when they
are not predefined. In the future, these graphs could be used to cluster similar patients, which is a useful
tool in the discovery process.
In order to assess these methods, we evaluate them on a binary prediction task. We use multiple GNN

architectures for both, the 𝐿2 and the UOT graph for node classification. In total, we evaluate their per-
formance based on 3 different graph architectures, namely a GCN, a GAT with 8 attention heads and a
GIN (see Listings A.1, A.2 and A.3). Both the GCN and the GAT employ a hidden dimension of size 64.
However, for the GIN, we choose a hidden dimension of size 128 due to our observations that it yields
superior results. Each model consists of 2 hidden layers that aggregate information for each node from
its 2-hop neighborhood. In addition, we incorporate dropout and batch normalization techniques into the
model to ensure stable training and prevent overfitting.
To assess whether encoding information in graphs and using a graph structure is preferable, we compare

it to baseline model, namely an MLP (see Listing A.4). The MLP consists of two hidden layers, with each
layer consisting of 64 neurons and uses dropout and batch normalization. Laboratory values and all other
relevant patient characteristics are used as input to the MLP. For all methods we set the dropout rate to
35%. To guarantee a fair comparison, we perform a 5-fold Cross Validation on the training dataset, ensuring
that each model is trained on the same folds. Finally, we train the models on the entire training set and
evaluate them on the test set.
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4 Data and Results

4.1 Lung Cancer Dataset

The dataset used in this analysis consists of 4320 patients, all suffering from lung cancer. In addition, up
to 404 characteristics were recorded for each of them.

Laboratory Values, ICD Codes, and Patient Characteristics

92 laboratory values (LAB_###) were collected prior to individual therapy, ranging from erythrocyte and
granulocyte counts to potassium and urea levels. Furthermore, each patient is described with 90 binary
International Classification of Disease (ICD_###) codes, where each value is a separate characteristic.
ICD_### codes provide a global standard for recording and analysing health data, enabling consistent
comparison and interpretation of mortality and morbidity information, while ensuring compatibility for
various purposes beyond statistics [82]. Age and sex are also characteristics in the dataset. Information
is also available on whether a patient is a smoker and how many pack-years—packs of cigarettes per day
times years of smoking—they have.

OPS, Therapy, Diagnosis, and Cancer Types

The next most prominent features in the dataset are the Operation and Procedure Classification System
(OPS_###) values. In this dataset 51 binary features are used to indicatewhich operational procedureswere
performed. Generally, it is important to note that the dataset does not encompass all existing OPS_###
categories. In addition, 31 dichotomous features ctx_### describe which type of intravenous therapy and
another 17 binary features with prefix name rezept_### indicate which oral drugs were administered.
Besides, 12 different binary features depict the histological diagnosis (Histology_###) of lung cancer,
ranging from adenocarcinoma to glioblastoma and squamous cell carcinoma, to name a few. Furthermore,
9 dichotomous covariables (Metastasis_###) indicate whether a metastasis has occurred in a certain
part of the body, for example in organs such as the liver, the lymph nodes, the brain or in the bones.
Moreover, 8 numerical clinical characteristics (Clinical_###) representing different body measure-

ments, including arterial blood oxygen saturation, body temperature, heart rate, systolic blood pressure,
diastolic blood pressure, height, weight and Body Mass Index (BMI), were recorded 2 weeks before treat-
ment. Lung cancers (Cancertype_###) are classified into NSCLC (Non-Small Cell Lung Cancer) and
SCLC (Small Cell Lung Cancer). Additionally, only sarcomas—which arise from the malignant transfor-
mation of connective tissue cells—were observed as secondary malignancies within the dataset.

Cancer Staging and Body Composition

The categorical feature TNM_Stage—following the internationally recognized TNM classification of ma-
lignant tumors—has 5 possible outcomes: 0 indicates no cancer, 1 represents small cancer that has not
spread, 2 stands for cancer that has grown but not spread, 3 suggests larger cancer and possible spread to
surrounding tissue, and 4 implies cancer that has spread from its site of origin to at least one other tissue.
TNM_T describes the size of the tumor from 1 (small) to 4 (large), TNM_N indicates whether the cancer was
found in 0 (none) to 3 (many) lymph nodes , and TNM_M signifies whether metastasis occurred (1) or not
(0). There are a total of six different numerical Body Composition Analysis (BCA_###) characteristics,
such as muscle and bone volume, which provide information about the patient’s body composition. These
measurements, derived from CT images, were taken a maximum of 2 months prior to treatment, using an
automated workflow.
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Genes and Biomarkers

The ECOG (Eastern Cooperative Oncology Group performance status) feature is a scale of functional ability
ranging from 0 to 5, where 0 means full ability, 1-3 increasingly limited functional ability, 4 total disability,
and 5 death [83]. Another feature is MSI, which stands for microsatellite instability. Microsatellites are
short, repetitive DNA sequences within the genome that encode information such as whether or not two
individuals are closely related, and the instability results from propagated DNA replication errors. Cancers
with high MSI have been shown to have a better prognosis and response to immunotherapy [84]. Another
binary feature present in the dataset is the Epidermal Growth Factor Receptor (EGFR), which is assigned a
value of one if it is present. EGFR is a transmembrane protein that regulates epithelial tissue development
and homeostasis. It is a driving force in lung cancer tumorigenesis, and is used as a biomarker for tumor
resistance [85]. KRAS (Kirsten rat sarcoma viral oncogene homologue) is a gene—encoded as a binary
feature in the dataset—that is considered to be a common gene driver for human cancers [86]. It also
plays an active role in current research for therapies targeting KRAS mutations in KRAS-driven cancers.
The binary feature, called TP53, is a gene that encodes tumor protein 53, which regulates cell division
by preventing the cell from multiplying or growing too quickly [87]. The covariate Programmed Death-
Ligand 1 Tumor Proportion Score (PD-L1_TPS) is numeric and encodes the Tumor Proportion Score (TPS)
of the PD-L1 transmembrane protein, which is highly expressed in a variety of malignancies, including
lung cancer [88, 89]. The PD-L1_TPS is commonly used as a selection marker for immunotherapy [90]

Outcome Variables

The outcome variables of the dataset are death_observed, i.e., whether a patient died or was censored.
This is paired with the OS (Overall Survival) variable, which indicates how many days an individual was
in the cohort before they died or got censored. Another potential outcome variable is whether treatment
failure has occurred encoded as TTF_Event. It is 0 if the patient was censored or 1 if the patient died or
received another treatment. This variable is paired with the Time to Treatment Failure variable TTF, which
indicates the number of days a patient received this one treatment. Traditionally, observed death has been
the most commonly used outcome for time-to-event analysis of patients. However, a new and growing
trend is the use of treatment failure as an alternative measure. This analysis examines both. A summary
of all features with their definition, number of features, and data type is displayed in the supplementary
Table A.3.

4.2 Descriptive Analysis

The goal of this Section is to provide a first impression of the dataset, how features are distributed and
what questions are worth evaluating.
As with most real-world datasets, the data is not perfect because many factors affect the data generation

process, such as the quality of laboratory equipment, the honesty of patients in surveys, human error in
data collection, N/As, and more. Therefore, it is necessary to find these errors and mitigate their impact
on the overall performance of the model. This is done by first obtaining an overview of the dataset, in-
cluding its statistical parameters for each characteristic. In addition, the data is examined for coherence
by generating plots showing the relationship between outcome variables and selected covariates.
In total 1744 female and 2576 male patients are in the dataset. Death was observed for 2753 individu-

als, while the remaining 1567 were censored. Notice that the TTF_Event has more observations where
the event took place (TTF_event = 1) than the outcome variable death_observed (see Table 4.1). This
is coherent, because a failure of treatment is not necessarily to be set equal with death. Examining the
histograms depicting the outcome variables OS and TTF in Figure 4.1, it is noticeable that most of the
observations are concentrated within the first 1000 days and exhibit a rapid exponential decline as time
progresses. From a medical perspective, it is to be expected that the likelihood of survival declines with
time. However, this also depends on several other factors, such as when treatment began and the stage of
the tumor. In addition, to check for consistency, potential outcome variables of interest such as Overall
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death_observed TTF_Event gender_female

0 1567 1215 2576
1 2753 3105 1744

Table 4.1 Summary of outcome variables for the lung cancer dataset provided by University Hospital Essen. In total
1567 patients were censored in the dataset, whereas 2753 died. Additionally, for 3105 out of 4320 patients treatment
was not successfull after a certain time and 1215 were censored. The dataset contains 60% men and 40% women.

Survival (OS) and whether a death was observed are shown in Figure 4.2. This graph shows a patient’s
Overall Survival on the y-axis, categorized by varying ECOG scores, and is color-coded to distinguish be-
tween patient death and censoring. The shapes are the kernel density estimates, and the width of each bin
has been scaled by the number of observations in that bin. Interpretation shows that lung cancer patients
with a high ECOG score, i.e. with low functional capacity, have a lower OS than patients with a lower score.
This observation aligns with the medical point of view.
Additionally, of the 4320 patients present in the dataset, there exist both categorical features and nu-

merical features with many N/As (see Figures A.1 and A.2). To get a more detailed view of all N/As in the
dataset, Tables A.5 and A.4 are to be consulted.
Generally, this poses the question on how to incorporate such features into themodels. Since most of the

survival models do not work with missing values, the features containing missing values have to be either
dropped or processed in order to keep them. Simply dropping them from the model removes potential
valuable information for the model. Various techniques exist for coping with N/As. One of them are polar
encodings, which ensure equidistance between missing and non-missing values, providing an approach
to incorporate missingness in attributes that aims to let Decision Trees choose how missing values should
be split [91]. Another option are imputation techniques, where missing values are replaced by a statistical
summary derived from the available non-missing values of a feature. The choice of technique depends on
the context and requirements. In addition, a reasonable threshold for their presence in a column must be

Figure 4.1 Histograms of the outcome variables Overall Survival and Time to Treatment Failure. Both are color-
coded with their corresponding binary event variable. Most patients survived up to 500 days and were then either
censored, which means death_observed is set to 0 or died. The OS in days decreases exponentially with time. For
the TTF histogram similar behaviour is shown. TTF has more early events occurred (TTF_Event = 1) compared to
death_observed. This observation is consistent because treatment failure does not necessarily mean the death of
a patient, and it is reasonable to assume that patients may have undergone multiple treatments.
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Figure 4.2 Overall Survival of patients in days, depending on their ECOG score and whether they were censored or
died. The violins are the kernel density estimates, and thewidth of each binwas scaled by the number of observations
in that bin. ECOG is a score used to assess functional ability of cancer patients. The higher the score, the less able
patients are to take care of themselves, corresponding to advanced cancer progression. Therefore, it is medically
expected that patients with a higher ECOG score will have a lower Overall Survival, which is confirmed by the plot.
Note, that for an ECOG score of 4, no individuals were censored and all died within a short period of time. The results
show that patients with lower functional ability (higher ECOG scores) tend to have shorter survival.

chosen. This is a critical consideration because an excessive number of missing values can be a source of
bias and distortion in the overall analysis.
This descriptive overview serves to provide a first impression of the outcome variables in the dataset,

including their distributions. Furthermore, it highlights potential shortcomings of the covariates, such as
the presence ofmissing values and class imbalance. For a comprehensive summary of statistical parameters
and variable definitions, please refer to Tables A.3, A.4 and A.5.
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4.3 Data Preprocessing

This Section describes the data preprocessing steps that are carried out prior to feeding the data into the
models. Note that this preprocessing step is the same for all models. Since we are working with a subset
that includes only lung cancer patients from a larger pan-cancer dataset of UHE, we first remove the
Cancer_### features. However, it is important to note that this variable remains of interest for future
analyses, as it can be easily integrated into models and the preprocessing pipeline.
Secondly, all columns containing only N/As or only zeros are removed, as these columns do not pro-

vide any meaningful information. Next, we apply a filter to all categorical feature columns with bi-
nary outcomes: OPS_###, ICD_###, Cancertype_###, Metastasis_###, rezept_###, ctx_###, and
Histology_###. If one of these columns has less than 100 entries set to 1, which corresponds to about
2% of the individuals in the dataset, it is removed. Following a discussion with our domain scientists, we
then combine the Body Composition Analysis (BCA) values in the following way to create new features:

BCA_muscle_bone =
BCA_muscle

BCA_bone
,

BCA_imat_tat =
BCA_imat

BCA_tat
,

BCA_imat_muscle =
BCA_imat

BCA_muscle
,

BCA_sat_vat =
BCA_sat

BCA_vat
.

(4.1)

This step is taken based on previous research findings of UHE. Subsequently, the original BCA_###
columns are dropped. After this, all columns with more N/As than a custom amount will be dropped. In
our analysis, this amount is N/A ≤ 400, which is about 10% of the data, or N/A ≤ 2532, where we try to keep
more features in the dataset, including BCA_### values, all of which have a total of 2532 missing values.
This results in a total of 83 features for N/A ≤ 400 and 130 features for N/A ≤ 2532. Removing features
with too many N/As serves several purposes: reducing the dimensionality of the dataset, enhancing the
computational speed of models, and improving the interpretability of models by reducing the potential
noise introduced by imputation.
A filter is then applied to all laboratory values, which checks if the values are more than 4 times a

standard deviation away from the columns mean. These values are then set to N/A to be imputed later on.
Thus, we lower the risk of biasing our models, because outliers can have a big effect on the training and
the weights. Based on the objective at hand, the dataset can be partitioned into male and female subsets,
and separate training and test sets are created. Employing an 80-20 split, we allocate 80% of the samples
for training and reserve the remaining 20% for testing. Within the training set, we then use 80% to create
the final training set and 20% for validation. The variables death_observed, OS, TTF_Event, and TTF
serve as outcome variables.
Since the data is not longitudinal, potential data leakage can be easily avoided by imputing N/As sepa-

rately for each set. Imputation is performed by replacing all N/As of a column with the respective column
mean. The numerical features of the training, validation, and test datasets are then standardized by sub-
tracting the mean and scaling to unit variance. The mean and variance used for scaling are derived from
the training set features to ensure consistent scaling across all sets.
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4.4 Survival Analysis

In this Section, we evaluate different survival models for predicting the risk-of-death or treatment failure.
After identifying the differences in performance, we evaluate one of them using Shapley values and high-
light potential use cases for clinicians, such as providing an interpretable representation of risk prediction.
In addition, we identify features with high predictive power that can offer further insight into lung cancer
in general and create new research opportunities.

4.4.1 Model Comparison

To ensure a consistent comparison among these methods, we used the same training, test, and validation
sets for all models. Across all themethods described in Section 3.1, there is a consistent level of performance
when using death_observed as the event variable, as shown in Table 4.2. All models are able to correctly
rank the risk for individuals with over 70% accuracy indicated by a Concordance Index greater than 0.7. For
N/A ≤ 400 DeepSurv is the best performing model with a C-Index of 0.707, whereas for N/A ≤ 2532 XGBSE
performs best with a Concordance Index of 0.722. This showcases that model performance is dependent
on the number of imputed missing values. Comparing the Integrated Brier Scores, RSFs achieve the best
result on the test set as well as for the 5-fold CV.
Table A.1 shows that with treatment failure as the event variable, a RSF is the best performing model

for N/A ≤ 400 with a Concordance Index of 69.4%. Contrarily, for N/A ≤ 2532 DeepSurv achieves the best
result as measured by a Concordance Index of 0.707 and IBS of 0.162. This underscores that for time-to-
event analysis, which typically takes only survival as the event, treatment failure is an alternative worth
evaluating.
Additionally, across both datasets RSFs perform the best according to the 5-CV IBS. However, it is impor-

tant to note that there is no uniquely superior model, as model performance tends to differ as measured by
the C-Index depending on the dataset and specific event variable being analyzed. It strikes that in general,
the more missing values we allow a feature to have, and to be replaced by the corresponding columnmean,
the better the overall performance of the models across all methods. A reason for that can be that effec-
tively more information is kept in the dataset, leading to better results due to more variability. However,
additional bias can be introduced through imputation which can inflate the performance metric. Hence, it
is essential to evaluate the robustness and explainability of the models.
It is also important to mention, that training time of these models differs. One the one hand, training for

XGBSE and RSFs takes longer compared to DeepSurv, but can be accelerated by parallelizing the compu-

Model C-Index IBS 5-CV C-Index 5-CV IBS

N/A ≤ 400

DeepSurv 0.707 0.178 0.702 ± 0.019 0.179 ± 0.009
RSF 0.704 0.177 0.704 ± 0.023 0.178 ± 0.009
XGBSE 0.705 0.181 0.705 ± 0.024 0.181 ± 0.008

N/A ≤ 2532

DeepSurv 0.714 0.175 0.701 ± 0.016 0.180 ± 0.009
RSF 0.717 0.175 0.723 ± 0.015 0.173 ± 0.008
XGBSE 0.722 0.178 0.724 ± 0.022 0.178 ± 0.007

Table 4.2 Survival model comparison measured by Concordance Index and Integrated Brier Score for
death_observed as event variable. N/A smaller or equal than 400 indicates that only columns with at most 400
N/A’s were kept to be imputed, while removing columns with more. Similarly, this was done for columns with up to
2532 N/A’s. All model achieve comparable results and there is no single model which outperforms the others. Model
performance generally increases when keeping features with many N/A values. However, it is crucial to treat this
observation with caution, as it is influenced by the extensive imputation that took place.
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tation of the trees. On the other hand, DeepSurv requires more considerations about network architecture
and learning rate, and does not work out-of-the-box like the other two methods. We also found that for
the NN of DeepSurv defined in Section 3.1, increasing the complexity by adding more layers or increasing
the capacity by adding more nodes per layer did not improve the overall performance as measured by the
C-Index.

4.4.2 Explainability with Random Survival Forests

After showing that RSFs have a similar or better performance than comparable state-of-the-art methods,
we use their Shapley values to find important features which drive the models decision-making process.
Our aim is to gain a better medical understanding of the features that are associated with a higher risk-of-
event in lung cancer.
We create a total of six datasets for two N/A thresholds using the preprocessing steps outlined in Section

4.3 by keeping the entire dataset as well as splitting it into male and female individuals. These subsets are
used to find gender specific differences in feature importance. All subsets are then partitioned into a train
and test set.
All models have a comparable performance for the event variables death_observed and TTF_Event

(see Tables 4.3 and A.2). It is striking that the RSF containing only male individuals performs the best for
both events as measured by Concordance Index and IBS. This could be because male individuals have a
higher sample size (see Table 4.1), so that their features have a higher variability and yield a more robust
estimate. With death_observed as the event variable, all models achieve a C-Index greater than 0.7,
indicating that the models are able to correctly rank individuals over 70% of the time. Consistently, we
observe an improvement in model performance when a larger number of features are retained in the
dataset.
Overall, the RSFs show good predictive power across all datasets, confirming their effectiveness. How-

ever, as their C-Index and IBS shows, there is still room for refinement, which could be achieved through
more feature engineering, fine-tuning of hyperparameters, using subsets of the dataset, creating new en-
semble methods and improving overall data quality.

Model C-Index IBS 5-CV C-Index 5-CV IBS

N/A ≤ 400

All 0.704 0.175 0.706 ± 0.013 0.176 ± 0.007
Female 0.704 0.172 0.676 ± 0.012 0.188 ± 0.010
Male 0.720 0.169 0.703 ± 0.011 0.171 ± 0.008

N/A ≤ 2532

All 0.716 0.175 0.724 ± 0.015 0.171 ± 0.008
Female 0.720 0.170 0.705 ± 0.019 0.184 ± 0.008
Male 0.737 0.163 0.721 ± 0.017 0.166 ± 0.006

Table 4.3 Random Survival Forest results with death_observed as event variable on the entire dataset, as well
as on subsets filtered for male and female individuals. N/A smaller or equal than 400 indicates that only columns
with at most 400 N/A’s were kept to be imputed, while removing columns with more. Similarly, this was done for
columns with up to 2532 N/A’s. In general, we observe that model performance tends to improve as more columns
are retained in the dataset. However, it is crucial to treat this observation with caution, as it is influenced by the
extensive imputation that took place. The RSF on the male subset performs the best measured by the C-Index and
IBS.

Shapley Value Analysis

Using the prediction of the RSFs on the test set, we calculate the SHAP values of the features for each
individual with a permutation explainer. The magnitude of a SHAP value indicates to what extend a
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feature influences the event risk for an individual. Furthermore, a positive sign of the SHAP value indicates
that the event risk is increased, whereas a negative SHAP value means a decreased risk. In the following
analysis, each dot represents one person in the test set, with the corresponding feature values displayed
on a continuous color scale. If a feature has only two colors, it implies that this feature has only binary
entries, where the ones are color-coded red and the zeros are in blue.

A physician can now use these values to find relevant features that have a positive or negative impact
on the patient’s predicted risk. In addition, interaction effects between covariates can be identified based
on the model’s predicted risk score, providing valuable insight.

1. Feature Importance Comparison between Male and Female Subset

Figure 4.3 shows the top 20 features ranked by their influence for two RSFs, one with the male subset and
the other with the female subset. death_observed was used as the event variable and N/A ≤ 400. Both
models share many of the top 20most important features, such as the laboratory values of granulocytes,
erythrocytes and hemoglobin, but not all, like patient age, MCV levels or GGT values.

For the model containing only male individuals, LDH has the largest influence on the predicted risk,
while for females it is the lymphocyte percentage in the blood. For both it is medically intuitive that they
are important for risk-of-event prediction since LDH is an enzyme that is released during tissue damage
and lymphocytes are known to play a role in the immune systems defense against diseases. In each case,
there is no trend in whether high or low values indicate an increased or decreased risk-of-event. This can
be seen as an indicator that more detailed patient level analysis is required. In addition, all individuals
who received Cisplatin as a treatment (red color) have a negative SHAP value and thus it decreases
the risk of an death, while those who did not receive this treatment have an increased risk-of-event (blue
color). However, men treated with Carboplatin have a higher risk-of-death than those who did not
receive it. At first glance, this seems counterintuitive, since one would expect the treatment to improve a
patient’s condition. This behavior could be explained by potential confounders, other medical decisions
that influenced this treatment that are not encoded in the dataset, or by insufficient predictive power of
the model. This analysis aims to compare feature importance between genders and to offer physicians
insights for potential future research.

Figure 4.3 Top 20 most important features, as measured by SHAP values, for a Random Survival Forest based on
male and female data with death_observed as the event variable. Every point is a feature of a patient from the test
set. While the ranking of importance of features differs between the male and female models, there is considerable
overlap, as many important features appear in both models.
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2. Feature Importance Comparison of Complete Dataset

The subsequent in-depth analysis focuses on a RSF that was trained on the entire dataset with the event
variable death_observed and N/A ≤ 400. Since this dataset is larger, the predictions also become more
robust. In this way, an understanding of feature importance across genders can be gained and how they
relate to the risk-of-death from lung cancer.
Similar to the previous analysis, the laboratory values of LDH and lymphocytes are the most important

and third most important features. However, there is no trend if a high or a low feature value increases
the predicted risk. This may also mean that a more sophisticated examination of these characteristics is
required. For the second most important feature, the CRP value, however, a clear trend is evident. The
color gradient for CRP changes slowly from light blue to dark red, indicating that a low CRP value lowers
the risk-of-death (negative SHAP value), while a high CRP value increases the risk-of-death (positive SHAP
value). To put it in a medical context, CRP has long been regarded as a minimal invasive measure of an
ongoing inflammatory response [92]. A high value indicates a strong ongoing response and is therefore
coherent with a higher risk-of-death, which further validates our model.
Laboratory values of monocytes express a similar behaviour. For an increasing amount of monocytes

in the blood the SHAP value rises from negative (decreased event risk) to positive (increased event risk).
Medically, it is to be expected that monocytes are among essential features, as they have proven to be
important regulators of cancer progression and development as described in Olingy, Dinh, and Hedrick
[93]. However, for further investigation, it is important to consider confounding factors in this context, as
monocytes are a subclass of leukocytes, which are also a feature of the dataset. This is just one example
of a general difficulty of this dataset, as many features are potentially correlated. It underscores the im-
portance of considering potential interactions between variables during interpretation and collaborating
with physicians towards this objective.
Another important observation is that there are many individuals with low leukocytes per nanoliter

blood values who have a very high positive impact on the models predicted risk, thus an increased risk-
of-death. To put this in the medical perspective, a low number of leukocytesmeans fewer leukocytes
doing their crucial job of immune response, which is vital for cancer patients.

Figure 4.4 Top 20 most important features, as measured by SHAP values, for a Random Survival Forest with
death_observed as the outcome variable.
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Overall, this stresses the importance of interpretability of a model’s predictions, as this can increase
confidence, serve as a coherence check, and reveal new insights. Nonetheless, it is essential to acknowledge
potential challenges, such as confounding and model limitations.

2.1 Feature Interaction Analysis

In the following the effects between different features are further examined. Figure 4.5 shows the rela-
tionship between the SHAP values of the standardized age of an individual with a color indicating if the
person is a female (red) or male (blue). Generally, a low age decreases the risk-of-death, whereas for a
higher age the event risk increases strongly. Examining the differences in event risk between genders
reveals a similar risk behavior with increasing age.

Figure 4.5 SHAP dependency plot of age color-coded with gender. As age increases, so does the risk-of-death for
a patient. There is no clear trend as to whether this is different for male or female patients.

We also investigated if the two most important variables CRP and LDH for the RSF exhibit differences
across genders. We find no clear indications that the risk value for these features varies significantly (see
Figure 4.6). Additionally, although not depicted in this plot, our evaluation reveals that no trend across
different age groups is apparent for both features.

Figure 4.6 SHAP dependency plot for CRP and LDH lab values. Higher levels of CRP or LDH lead to an increased
risk-of-death, while low levels decrease the risk. There is no difference between the sexes.

Furthermore, we find strong interactions between the laboratory MCHC values with LDH values as well
as CRP values with neutrophil granulocyte counts per nanoliter blood. Figure 4.7 shows the de-
pendencies between them. For low as well as high MCHC values the event risk differs across individuals.
However, when overlaying it with the LDH values it becomes apparent, that all individuals who got a high
SHAP score assigned to their MCHC value, exhibit a high LDH score and for those with a low score a low
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LDH. Additionally, upon analysing the relationship between CRP values with neutrophil granulocyte
counts, we observed distinct patterns. Initially, lower CRP values are associated with a general decrease in
the risk-of-event. However, within the low CRP range, individuals with high neutrophil granulocyte
counts had a smaller reduction in the risk-of-event compared to those with low counts. Conversely, higher
CRP values are associated with an increased risk-of-event, with a greater increase observed in individuals
with lower neutrophil granulocyte counts.

Figure 4.7 SHAP dependency plot for MCHC and CRP, color-coded by the most variable feature. The risk-of-death
is evenly distributed for all MCHC values, but when color-coded with LDH, it shows that all individuals with a high
SHAP value for MCHC also have a high LDH value. This can be an indicator of a potential interaction or confounding.
For CRP an interaction with neutrophil granulocyte counts can be observed.

The above examples are intended to illustrate the power of such an analysis. In addition, there are
numerous features with many more interactions in the dataset that cannot be mentioned here as this is
beyond the scope of this thesis. It is left to the physicians at UHE, with whom we are working hand in
hand, to further evaluate the results and identify potential interactions worthy of separate studies in the
future.

3. Feature Importance for other Datasets and Event Variables

When using death_observed as the event variable with N/A ≤ 2532 we found different values being
among the top 20 most important for a RSF risk prediction. This is to be expected since we now effectively
incorporate more features and thus more information. As before LDH, CRP and lymphocytes features
are still the most important, but they are followed by a binary feature for liver metastasis. The SHAP
values indicate that for people who have a metastasis in the liver, an increased risk-of-death is to be ex-
pected which aligns with the medical intuition. Furthermore, other metastasis features in areas such as the
bones or brain are among the top 20. However, even if the model predictions are consistent with medical
expectations, it is important to treat these results with caution because many values were imputed.
For TTF_Event as the outcome variable, we generally observe more treatments under the 20 most

important features such as Cisplatin, Carboplatin and Vinorelbin. This observation is of great
scientific interest because it shows that the model is able to capture the importance of different treatments
regarding treatment failure. In addition, LDH, CRP and lymphocytes are among the top 4 features for the
model with N/A ≤ 400 and N/A ≤ 2532. For the latter one, we also find the feature TNM_M and TNM_Stage
among the top 20. Both their SHAP values align with the medical expectation that a higher value indicates
a higher risk of treatment failure for a patient, as it means that the patient was already in a medically
worse condition before treatment began.

4. Summary

All in all the models findings align with initial medical expectations, but there are several factors that need
to be considered. First, the data is imbalanced, for example the amount of people who received certain
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chemotherapy treatments differs, as shown in Table A.5. This can bias the model and limit generalization
ability. Second, each patient receives treatment tailored to their individual needs, and factors that played
a role in the physician’s decision to administer a particular drug may not be included in the dataset. In
addition, potential confounding factors may not have been taken into account, and association between
features does not necessarily imply causation.

Nevertheless, such models can assist clinical decision-making, in order to reduce a patients overall risk,
such as death or treatment failure. Another potential use case is to apply thesemodels to identify promising
biomarkers that may indicate, for example, whether a patient is likely to develop cancer, or that could be
used to tailor treatment for patients who already have the disease.
Ultimately, this approach may provide transparency to patients about how a physician arrived at a par-

ticular treatment decision, thereby creating greater trust and accountability. However, this new account-
ability could also have subsequent legal implications when it comes to why a physician did not provide a
certain treatment to a patient even though themodel would recommend it. All of these considerationsmust
be taken into account when developing a final model for building trust between patients and physicians.
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4.5 Unbalanced Optimal Transport on Clinical Data

In this Section, we evaluate the effectiveness of the methods developed in Section 3.2. In particular, we use
a subset of the lung cancer dataset provided by UHE (see Section 4.1) based on all individuals who had a
treatment failure event (TTF_Event = 1) at a given time TTF. By focusing on individuals who experienced
treatment failure, prediction objectives become more meaningful for non-survival models, since for the
censored individuals (TTF_Event = 0), their actual TTF may have been longer than the recorded value in
the dataset. This results in a total of 3105 individuals in the subset.

For the binary classification problem, we define the outcome as follows: individuals who experienced a
treatment failure in the first 189 days (TTF ≤ 189), which accounts for 1562 patients, are labeled as class
1, while the remaining 1543 patients are labeled as class 2. We decided to use the median of TTF as the
threshold for class creation, so that a default classifier would achieve an accuracy of 50%. The 𝐿2 and UOT
embeddings are then calculated based on this subset, with the standard preprocessing steps outlined in
Section 4.3, where all columns with more than 400 missing values were dropped. This ultimately results
in 28 laboratory features on the basis of which the embeddings are computed.

As shown in Table 4.4, the performance of theMLP for a 5-fold CV remains consistent across the different
embeddings as input, in terms of accuracy and F1 score. The maximum accuracy reached is 65.73% for a
baseline MLP which uses the standard preprocessed train data. It should also be noted that, for a fair
comparison, the MLP only uses the 28 laboratory features of individuals from the UHE dataset as input,
since the UOT and 𝐿2 embeddings are also calculated based on them. The 𝐿2 and UOT MLP classifiers
achieve almost the same accuracy and F1 score as the baseline classifier. In general, the UOT classifier
shows less variation in prediction accuracy and F1 score compared to the other two classifiers.

Overall, this indicates that predicting whether or not treatment failure will occur within approximately
six months is a challenging task. However, the embeddings still contain enough information to produce
comparable results. It is reasonable to expect some performance degradation for the MLP with 𝐿2 and UOT
embedding as input, since some information is effectively removed during the embedding process.

Method Accuracy F1 Score

MLP Classifier Baseline 65.73 ± 1.70 65.49 ± 1.72
MLP Classifier L2 65.02 ± 1.59 64.17 ± 2.03
MLP Classifier UOT 64.51 ± 0.77 64.36 ± 0.79

Table 4.4 The Table displays the accuracy and the F1 score in % for an MLP classifier based on different embeddings.
The baseline consists of the preprocessed laboratory values, which perform the best as measured by both metrics.
The MLPs for UOT and 𝐿2 embeddings perform only marginally worse.

When comparing the average class prediction performance of the different classifiers for the 5-fold
cross-validation, neither method is clearly better than the other (see Figure 4.8), as expected from Table
4.4. Furthermore, our analysis reveals that the MLP using the 𝐿2 embeddings tends to incorrectly assign
more individuals from class 1 than from class 2. Conversely, the baseline and UOT MLPs display a more
balanced classification, distributing individuals more evenly across classes.

In conclusion, as this comparison highlights, both laboratory data and their respective embeddings pos-
sess some predictive power for the task at hand. However, it is important to recognize that the prediction
objective remains challenging, suggesting that further research and refinement is needed to make more
accurate predictions. Additionally, we extended our analysis to a larger subset that includes more features,
limiting the number of missing values per feature to a maximum of 2532. However, this expansion did not
significantly improve the performance of the models.
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Figure 4.8 Average confusion matrices based on a 5-fold CV of MLP classifiers with different embeddings as input.
For the 𝐿2 embedding the MLP tends to classify more individuals to class 2 compared to the other two embeddings.

4.5.1 Patient-Patient Similarity Graphs with Unbalanced Optimal Transport

In this Section, we explore whether encoding the information in a graph structure improves the perfor-
mance of predicting the treatment failure time class. To build a graph, we create an edge between individual
i and j, if the corresponding entry in the embedding is bigger or smaller than some threshold. For the 𝐿2
embedding we create an edge (i,j) if its entry is smaller than 0.13. For the UOT embedding (𝑃∗) however,
an edge is created if the entry is bigger than 0.006. We choose these thresholds so that almost all of the
3105 patients have at least one connection to another patient in the graph in order to obtain meaningful
associations. Furthermore, these thresholds help to reduce the number of edges in the graph while ensur-
ing that there is still a large sample size of patients available for analysis. Overall, this results in a graph
for the UOT embedding with a total of 50983 edges containing all 3105 patients as nodes. In contrast, the
graph created from the 𝐿2 embedding encodes only 3098 patients as nodes with a total of 3469316 edges.
To ensure a fair comparison, we only use patients that are present in both graphs, thus removing unique
nodes.
In general, we observe that the graph constructed using the 𝐿2 embedding has a significantly higher

node degree compared to the graph generated based on 𝑃∗. This can affect the network structure and
overall performance. In addition, increasing the threshold for 𝐿2 quickly isolates many nodes, but the total
number of edges remains relatively high.
Figure 4.9 illustrates the connected components of the graph created from 𝑃∗, with nodes color-coded

according to their class. We observe that a patient has no more than 70 edges to other patients. The
degree histogram reveals that most of the patients have a link—implying similarity—to between 30 and
50 of the other patients. The degree rank plot provides further insight in the connectivity distribution of
the patients. It ranks the node degrees in descending order and shows that for the graph based on 𝑃∗ the
node degree exhibits a sharp decline between 70 and 50. Thereafter, the connectivity of patients gradually
decreases, with a greater decline at lower degrees, meaning that there are fewer patients who are “similar”
to only a few other patients. In contrast, the graph for the 𝐿2 embedding has a substantial number of
outgoing edges for each patient, reaching as high as 2900 (see Figure A.3). This results in a very dense
graph that is difficult to visualize effectively. Furthermore, the degree rank plot reveals that the first 2.500
patients have degrees of up to 2.000, while the connectivity of the remaining patients shows a steep and
rapid decline.
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Figure 4.9 Connected components of a patient-patient similarity graph based on the Unbalanced Optimal Transport
map. A node represents a patient and an edges link similar patients. The Time to Treatment Failure class for
each patient is shown by the color of each node.

In summary, constructing a graph using the UOT map results in a sparser representation compared
to building a graph based on the 𝐿2 embedding. Moreover, the choice of thresholds and, in the case of
UOT, also the choice of regularization parameters affects the overall connectivity of the graph and must
therefore be tailored to the problem at hand.
As described in Section 3.2.1, we proceed to encode each node with its non-laboratory features, compris-

ing a total of 55 features for N/A ≤ 400. These features consist mainly of the categorical features ICD_###,
OPS_###, and intravenous therapy types. To compare whether encoding the information in a graph struc-
ture is preferable, we also train a MLP as the baseline with the combined laboratory and non-laboratory
features.
Table 4.5 provides a comprehensive summary of the models’ accuracy achieved during a 5-fold CV on

the training set. The results indicate that the UOT approach outperforms the 𝐿2 embedding. Among all
models, the GAT based on the graph with the UOT embedding has the best performance with an average
accuracy of 64.7%. Nevertheless, the MLP demonstrates only a marginally lower mean accuracy of 64.35%,
while at the same time having a lower variability of accuracy. In general, all GNNs based on the graph
created from the 𝐿2 embeddings performworse in terms ofmean and deviation of accuracy over the 5-folds.
It can also be observed that GCNs performs worse than GATs but better than GINs.
This shows that a sparse graph can give better results by aggregating more localized information and

potentially capturing specific patterns. Moreover, the results also indicate that a dense 𝐿2 graph, where a
node’s two-hop neighbors make up a significant portion of the entire graph, often fails to take advantage
of the knowledge inherent in communities. The results suggest that using graphs can lead to a marginal
performance gain over the baseline MLP. However, since this is a graph created using a real-world dataset,
the data may be too complex and the sample size too small for the graph to work as intended. In the future,
its predictive power should be evaluated using a subset of the dataset that already has a higher intrinsic
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Model UOT L2 Baseline

GAT 64.70 ± 3.47 54.21 ± 6.36 -
GCN 62.18 ± 4.51 57.03 ± 5.61 -
GIN 60.82 ± 0.99 54.11 ± 4.03 -
MLP - - 64.35 ± 1.79

Table 4.5Model accuracy in % for a 5-fold Cross Validation for various GNNarchitectures using different embeddings
compared to an MLP.

notion of similarity. For example, sub-graphs could be created based on patients with Non-Small Cell
Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) to provide a more meaningful representation
and potentially better predictive results.

Training Time Analysis

One aspect that highlights the power of sparse graphs is their impact on model training time, since the
number of edges directly affects it. As expected, the graph based on the UOT embedding trains faster than
the one based on the 𝐿2 embedding for a 5-fold CV on an NVIDIA A100 GPU (see Table 4.6). Additionally,
both GCN and GIN have a quicker training process relative to the one of the MLP. This scaling behavior
is especially interesting for larger graphs with more nodes. It has the potential to provide faster training
compared to an MLP and with a better graph architecture and improved edges, similar or even superior
results could be achieved.

Model UOT L2 Baseline

GCN 1.06 ± 0.34 5.24 ± 0.03 -
GAT 2.73 ± 0.06 120.24 ± 0.06 -
GIN 0.82 ± 0.04 6.13 ± 0.06 -
MLP - - 1.12 ± 0.07

Table 4.6Model training time in seconds on a NVIDIA A100 GPU.

Evaluation of Model Performance on the Test Set

After obtaining the best results for UOT-based graphs, we proceed to train the models on the entire train-
ing set and evaluate their performance on the test set. Contrary to the CV results, we find that the graph
methods do not perform better than the baseline MLP (see Table 4.7). It has an accuracy of 64.03%, closely
followed by the GAT, which achieved an accuracy of 62.9%. This result further demonstrates that a graph-
based approach does not guarantee superior results. Given the modest performance of current methods,
using a more homogeneous dataset, such as a subset of NSCLC patients, and building a graph with their
UOT map promises potential improvement in predictive accuracy beyond the baseline. Due to time con-
straints, this could not be investigated here, but should be followed up in future studies.

Model UOT Baseline

GAT 62.90 -
GCN 61.45 -
GIN 60.97 -
MLP - 64.03

Table 4.7 Accuracy of models on test set.
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Summary

Overall, the UOT graph generation method developed in this work did not lead to a substantial improve-
ment in prediction accuracy. However, it showed better performance, resulting in higher prediction ac-
curacy and shorter training times, compared to a naïve graph based on the 𝐿2 embedding. For future
applications, the UOT graph generation method is promising. It creates edges that are not intrinsically
given, lowers computational complexity, and holds the potential for superior outcomes when combined
with GNNs. Moreover, its performance could be further improved when applied to more homogeneous
subsets.
In general, using a graph structure can still have several advantages. In fact, a graph can be used to iden-

tify potential clusters of similar patients, such as those who have failed treatment after the same period of
time. This, in turn, could be studied in more detail to find patterns. Moreover, representing patient infor-
mation as a graph can simplify data complexity, especially when dealing with large and diverse datasets.
Another aspect worth exploring for the future is the use of graphs with pre-defined edges between pa-
tients, such as those based on molecular markers. This provides the opportunity to train graphs for edge
prediction, which can identify edges from a set of patients to a new patient. As a result, unnecessary inter-
ventions or painful procedures can potentially be avoided by taking advantage of the network’s insight.
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4.6 Lessons Learned and Failed Methods

In research, there are many methods, models, and ideas that fail or are not further followed upon. These
lessons are often neglected in scientific papers. However, they are critical to the learning process. The
purpose of this Section is to provide insights into failed approaches and to offer an opportunity to learn
from, refine, and reevaluate them for future efforts.

First, we evaluated several strategies for dealing with N/As. We tried using the median instead of the
mean for imputation, but this did not produce better results. Another technique we explored for dealing
with missing values were polar encodings, as introduced by Lenz, Peralta, and Cornelis [91]. These gave
comparable and sometimes better results than the mean imputation method when training DTs on built-
in datasets from the sklearn package. However, on our lung cancer dataset, RSFs using polar encodings
did not perform better compared to those using mean imputation. One reason for that could be the high
dimensionality and diversity of the dataset provided by UHE.
We made initial efforts to determine sex using laboratory values, but have not pursued this project

further due to time constraints. One reason is that it requires careful consideration of variables such
as laboratory values like BMI and hemoglobin, which are already known to differ between the sexes.
Eliminating such features may yield interesting results on characteristics that have not yet been shown to
be gender-specific. For example, these results could then be used for gender-specific precision medicine.
In addition, several other survival models were trained, such as XGB trees with a cox survival objective

function, Cox Proportional Hazards models with elastic net penalties, a probability mass function method
called Neural Multi-Task Logistic Regression, and a Piecewise Constant hazard (PC Hazard) model. Since
they did not provide better results as measured by the Concordance Index compared to DeepSurv, RSF and
XGBSE, they were not used in further analysis.
The dataset can also be split into many sub-datasets to measure the impact of different groups on the

event variables, e.g. individuals diagnosed with NSCLC and individuals diagnosed with SCLC. Models
such as RSFs, combined with the explanatory power of Shapley values, can be used to compare and assess
the importance of features within subgroups. We have trained several such models, but to avoid going
beyond the scope of this work, we leave the evaluation to the clinicians.
We also attempted to create patient-patient similarity networks with OT transport maps, but found

UOT embeddings to be superior. This can be explained by the fact that UOT does not force all mass to be
transported from the source to the target, so no mass needs to be transported when patients are dissimilar.
Furthermore, we used a method from topological data analysis, the Kepler mapper, to build patient-

patient similarity graphs. This method creates a graph of connected clusters of patients. Based on the
underlying clustering algorithm, the number of clusters does not necessarily have to be specified which
makes this approach very flexible. We then used the clusters and their connections to build a patient level
graph. Each patient is connected to every other patient within their respective cluster, as well as to all
patients in the other clusters that have been linked. We then performed the same node classification task
on the resulting graph as we did on the graphs based on the UOT and 𝐿2 embeddings. While this approach
performed better than the 𝐿2 graph, it did not outperform the UOT graph. The better performance of the
Kepler graph compared to the 𝐿2 graph may be attributed to the fact that its edges are more meaningful
and to the reduced graph density. However, it did not achieve better node classification results than the
UOT graph, which could be caused by the inherent complexity of the data. Since the results were not
superior to the UOT graph, we did not pursue it further. Nevertheless, it should be subjected to future
evaluation since many hyperparameters such as the clustering algorithm, the choice of lenses, the overlap
and the number of cubes affect the resulting Kepler graph.
Additionally, we did not get an improvement as measured by node classification accuracy when using

weighted edges based on the transported mass of the UOT map or the cost of the 𝐿2 embedding. This can
be due to several reasons, such as suboptimal edge quality, the complexity of the prediction objective, or
the fact that the transported mass might not capture the real underlying relationship between patients. For
future research, where the edges may already be given by the design of the data, edge weighting may still
be an area worth exploring to give more weight to certain edges from a patient, as it is natural to assume
that patients are not all equally similar to other patients.
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We also evaluated whether a certain node degree achieved a higher accuracy for node classification, but
could not find a clear trend. It is possible that the sample size of nodes at certain degrees was too small.
This may be a worthwhile field for future research to determine whether predictive accuracy improves for
patients with fewer or more edges, and to assess the impact of edge weighting.
In general, we have shown numerous promising areas for further research, spanning from imputation

schemes, gender-specific medicine and alternative survival models to topological data analysis techniques,
special graph architectures, and beyond.





51

5 Conclusion

In summary, we have provided a detailed mathematical overview of the foundations necessary to perform
survival analysis, compute Optimal Transport maps, and do Deep Learning on Graph Neural Networks
using a dataset comprising lung cancer patients from the University Hospital Essen.
We have further shown that modern methods for survival analysis such as DeepSurv, XGBSE and Ran-

dom Survival Forests provide a good risk-of-event estimate for lung cancer patients. However, it is impor-
tant to note that there is no one single model that clearly outperforms the others. In addition, RSFs together
with SHAP values yield a powerful approach to provide an explainable risk prediction for patients. Inte-
grating these methods into the medical decision-making process may allow for more personalized treat-
ment and provide new insights into the importance of features in determining a patient’s risk-of-event.
By leveraging this combination and accounting for potential confounding, physicians can make a more
informed treatment decision, increase explainability to the patient with less subjective influence, and dis-
cover new potential areas for clinical trials. As a result, this approach can lead to greater trust between
patient and physician.
Moreover, we have created patient-patient similarity graphs based on the distances between patients’

laboratory features and shown that they can be used for tasks such as node prediction, particularly for
predicting treatment failure within six months or later. In this context, we proposed a novel method to
construct sparse patient-patient similarity graphs with the use of Unbalanced Optimal Transport maps.
We have demonstrated that they achieve better predictive results and faster training with Graph Neural
Networks when compared to a naïve graph created from the 𝐿2 distance between patients. In compari-
son to an MLP, which was used as a baseline, we find that the graphs do not necessarily yield a better
prediction accuracy. This could be due to the heterogeneity and complexity of the underlying dataset,
the unsupervised way edges are created, the amount of edges per patient, the lack of relevant node-level
features, limitations in the graph structure, or more generally the dataset size.
Beyond that, we outlined additional opportunities of patient-patient similarity graphs such as finding

clusters of similar patients which can enable personalized treatment approaches. In addition, these graphs
can be used to predict edges between patients, potentially providing insight into disease progression or
indicating the presence of additional diseases that can be medically tested for.
In general, leveraging graphs creates the possibility for a more localized approach to decision-making

with clinical data, which can provide many desirable properties, such as scalability, personalized recom-
mendations, patient-patient similarity discovery, and more. However, we have shown that creating mean-
ingful edges within a graph remains challenging, especially when no “natural” edges exist, and thus must
be inferred from certain features within the dataset using methods such as our UOT edge generation
method.
Finally, we give an overview of the methods that either failed, did not achieve the desired level of perfor-

mance, or could not be explored further due to time constraints, to provide insight into our decision-making
and to advance research in general.

5.1 Applicability of Methods

The methods developed in this context can be applied to all time-to-event data including but not limited to
outcome variables such as treatment failure or death. They are especially interesting for hospitals, as they
can be easily integrated, provided that the data is stored in a structured format. By employing methods
such as DeepSurv, XGBSE or RSF to large, diverse and hospital-quality datasets, medical decision-making
can be improved and new potential areas for future clinical trials can be discovered. In addition, these
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methods can be continually refined as new data becomes available. However, except for DeepSurv, which
can reuse its pretrained weights, tree-based methods require retraining to incorporate new data points into
the model. From a computational point of view, this proves to be ineffective. Nevertheless, this problem
can be mitigated by building the trees in parallel.

Additionally, many factors play a vital role in the performance of these models, such as the number of
missing values in the dataset, feature imbalance, as well as method design and the causal context of the
prediction objectives. Especially, in real-world datasets for which potential feature interactions were not
directly considered, physicians must carefully account for potential confounding effects.
Utilizing graphs for prediction tasks on clinical data presents greater complexity in contrast to survival

methods, since it requires careful data preprocessing and sophisticated models. We have shown that pre-
diction tasks on them remain challenging. Our edge generation method based on the UOT map showed
promising results in terms of edge density, computational speed for GNNs, and performance. It can be
easily integrated for other datasets and should therefore be further investigated to realize the full potential
of graph-based predictive modeling in clinical settings. Moreover, due to its versatility, UOT also holds
great promise in areas such as anomaly detection, disease progression modeling, predictive modeling of
unbalanced datasets, and more.
Furthermore, numerous aspects are still to be explored, for instance, edge purity could be evaluated

based on different features such as a patient’s metastasis information or biological markers to gain a better
understanding of the graph structure and similarities between patients. Overall, the use of graphs for
clinical data remains an area for future exploration.

5.2 Outlook

Based on our study, several new questions and opportunities emerged that are worth evaluating in future
research. While the dataset provided by UHE is not inherently longitudinal, exploring it across multiple
time points could help to gain a more comprehensive understanding of its features. A survival model
can then be trained for each time point and tested to see how the predicted risk changes over time for
each individual and how accurate those predictions are. In addition, the incorporation of SHAP values for
explainability allows tracking the development of feature importance over time. This can shed light on
the longitudinal dynamics of the features of lung cancer patients. In addition, it can potentially provide
insight into which factors, such as laboratory values, are ultimately responsible for the death of a patient.
Another potential approach is to use the k-1 time points to construct an ensemble of models that correct

the errors of their previous models, similar to XGBoost. This condensed knowledge can then be used to
predict survival at the final time point, which can provide higher predictive accuracy. However, due to the
longitudinal nature of the data, model building requires more thought to avoid potential data leakage.
UOT can be used to track patients over time and find similar patients. For example, this approach can

help monitor the development of disease symptoms and serve as an “early warning system” or provide
earlier treatment options, especially when two patients are found to be similar, but one exhibits certain
symptoms and the other does not yet. In addition, for each time point a patient-patient similarity graph
could be created and then be used to track how similarities between patients change over time. This
might provide important information about the rate of disease progression in patients. In addition, with
information such as treatment success/failure, changes in patient-patient similarity can be tracked in the
graph and its communities to understand the effect of a particular treatment. Another potential application
would be to adapt the method proposed in Tong et al. [25] to use a patient’s features, such as lab values, as
signals on a patient-patient similarity graph or knowledge graph. It has been shown that these embeddings
can be used to identify potential clusters and clinically significant overlaps among patient diagnoses that
may not be directly apparent.
Generally, to further refine patient-patient similarity, a human-in-the-loop strategy is a viable option,

where similarity predictions are refined based on feedback from clinicians.
Furthermore, the methods employed in this dataset can be easily applied to bigger datasets like a pan-

cancer dataset. This will provide more insight into cancer in general. For example, an understanding of
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how cancers are expressed differently, such as in lab values, can be gained. In addition, our UOT approach
can also provide a notion of similarity between individuals with different cancers, identifying cancers that
are more similar than others. These insights could in turn motivate future clinical trials.
In summary, this outlook highlights the importance of continued research and potential opportunities

in this area and paves the way for future explorations. By relentlessly pursuing and evaluating different
approaches, we have the potential to significantly improve the lives of cancer patients and make progress
towards a potential cure through a better understanding of the disease.
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A Appendix

A.1 Supplementary Figures

Figure A.1 Histogram of all missing values for categorical features in the dataset. The median, range and standard
deviation are shown for each feature in the Table A.5.
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Figure A.2 Histogram of missing values for numeric features in the dataset. Only features with more than 500 N/As
are displayed. For all missing values Table A.4 is to be consulted.

Figure A.3 Connected components of a patient-patient similarity graph based on the 𝐿2 embedding. A node rep-
resents a patient and an edges link similar patients. The Time To Treatment Failure class for each patient is
shown by the color of each node. The visualization of the graph appears too dense, due to the excessive number of
edges.
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A.2 Supplementary Tables

Model C-Index IBS 5-CV C-Index 5-CV IBS

N/A ≤ 400

DeepSurv 0.693 0.171 0.681 ± 0.020 0.175 ± 0.006
RSF 0.694 0.167 0.686 ± 0.014 0.171 ± 0.005
XGBSE 0.689 0.171 0.686 ± 0.013 0.174 ± 0.005

N/A ≤ 2532

DeepSurv 0.707 0.162 0.685 ± 0.015 0.172 ± 0.006
RSF 0.704 0.164 0.704 ± 0.010 0.168 ± 0.004
XGBSE 0.703 0.168 0.701 ± 0.011 0.172 ± 0.005

Table A.1 Survival model comparison measured by Concordance Index and Integrated Brier Score for TTF_Event
as event variable. N/A smaller or equal than 400 indicates that only columns with at most 400 N/A’s were kept to
be imputed, while removing columns with more. Similarly, this was done for columns with up to 2532 N/A’s. All
model achieve comparable results and there is no single model which outperforms the others. Model performance
generally increases when keeping features with many N/A’s.

Model C-Index IBS 5-CV C-Index 5-CV IBS

N/A ≤ 400

All 0.696 0.165 0.688 ± 0.008 0.170 ± 0.011
Female 0.672 0.169 0.655 ± 0.025 0.183 ± 0.014
Male 0.705 0.163 0.694 ± 0.005 0.163 ± 0.009

N/A ≤ 2532

All 0.706 0.163 0.706 ± 0.013 0.167 ± 0.013
Female 0.696 0.168 0.678 ± 0.028 0.179 ± 0.017
Male 0.733 0.154 0.710 ± 0.006 0.161 ± 0.007

Table A.2 Random Survival Forest comparison with TTF_Event as event variable on the entire dataset, as well
as on subsets filtered for male and female individuals. N/A smaller or equal than 400 indicates that only columns
with at most 400 N/A’s were kept to be imputed, while removing columns with more. Similarly, this was done for
columns with up to 2532 N/A’s. In general, we observe that model performance tends to improve as more columns
are retained in the dataset. However, it is crucial to treat this observation with caution, as it is influenced by the
extensive imputation that took place. The RSF on the male subset performs the best measured by the C-Index and
IBS.
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A.2.1 Definition of Dataset Features

Variable Meaning Features Type

LAB_### Pre-Treatment Laboratory Values 92 Numeric
ICD_### International Classification of Diseases 90 Binary
Cancer_### Cancer Diagnosis 60 Binary
OPS_### Classification for Encoding Operations, Procedures, 51 Binary

and General Medical Measures [94]
ctx_### Intravenous Therapy Type 31 Binary
rezept_### Oral Medication Type 17 Binary
Histology_### Histological Diagnosis of Cancer Types 12 Binary
Metastasis_### Metastasised Organs 9 Binary
BCA_### Body Composition Analysis 6 Numeric
Clinical_### Body Statistics 14 Days before Treatment 8 Numeric
Cancertype_### Type of Cancer (CCC, HCC, NSCLC, SCLC, Sarcoma) 5 Binary
TNM_### Classification for Cancer Staging [95] 4 Categorical
age_at_ctx Age at Start of Therapy 1 Numeric
gender_female Gender of Patient 1 Binary
Grading_grade Cancer Stages from In-Situ to Metastatic 1 Categorical
Smoking_smoker Smoking Status 1 Binary
Smoking_packyears Cigarette Packs per Day × Smoking Years 1 Numeric
ECOG Performance Status Scale [83] 1 Categorical
MSI Microsattelite Instability [84] 1 Binary
EGFR Epidermal Growth Factor Receptor [85] 1 Binary
KRAS Kirsten Rat Sarcoma Viral Oncogene Homologue [86] 1 Binary
TP53 Gene Enabling Tumor Suppressor Protein 53 [87] 1 Binary
PD-L1_TPS PD-L1 Tumor Proportion Score [89] 1 Numeric
TTF Time to Treatment Failure 1 Numeric
TTF_Event Treatment Failure 1 Binary
OS Overall Survival 1 Numeric
death_observed Death Observed 1 Binary

Table A.3 Definitions of features of the dataset provided by University Hospital Essen.
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A.2.2 Statistical Summary of Features

Numerical Variables

Feature #N/As Median Range SD
LAB_Eos. Granulozyten# /nl 309 0.12 100.62 1.66
LAB_Leukozyten /nl 24 8.73 108.89 5.27
LAB_GPT (ALAT) U/l 88 22.0 519.0 33.37
LAB_Lymphozyten# /nl 302 1.42 6.47 0.72
LAB_MCHC g/dl 24 33.5 10.7 1.19
LAB_Baso.Granulozyten# /nl 300 0.03 2.3 0.05
LAB_GOT (ASAT) U/l 69 21.0 579.0 33.36
LAB_Hämatokrit l/l 24 0.38 0.37 0.05
LAB_Lymphozyten% % 302 16.6 68.6 9.28
LAB_Bilirubin (gesamt) mg/dl 156 0.4 13.2 0.49
LAB_MCV fl 85 88.1 57.5 5.71
LAB_Erythrozyten /pl 24 4.3 4.79 0.6
LAB_Hämoglobin g/dl 85 12.6 12.4 1.83
LAB_Natrium mmol/l 100 139.0 39.0 3.49
LAB_MCH pg 24 29.5 21.0 2.33
LAB_Gesamt-Eiweiß g/dl 672 6.8 5.18 0.7
LAB_CRP mg/dl 96 1.8 53.0 5.5
LAB_Monozyten% % 302 8.3 42.0 3.54
LAB_GGT U/l 157 42.0 2706.0 197.4
LAB_Eos. Granulozyten% % 309 1.4 93.3 3.25
LAB_Neu. Granulozyten% % 309 71.3 97.0 11.89
LAB_Baso. Granulozyten% % 300 0.4 7.6 0.35
LAB_Neu. Granulozyten# /nl 309 6.13 91.66 4.4
LAB_Kalium mmol/l 99 4.5 7.7 0.52
LAB_Glukose (Serum) mg/dl 1075 101.0 565.0 47.95
LAB_LDH U/l 77 247.0 5775.0 296.74
LAB_Harnstoff g/l 1970 0.33 2.25 0.17
LAB_Thrombozyten /nl 24 292.5 1060.0 121.93
LAB_Monozyten# /nl 302 0.71 3.63 0.37
LAB_Calcium mmol/l 202 2.3 2.66 0.17
LAB_Ery.verteilungsbreite (SD) fl 743 45.0 62.7 6.71
LAB_Thrombocyten >12fl % 1382 23.4 49.4 7.13
LAB_MPV fl 595 9.8 6.1 0.88
LAB_Harnstoff-N mg/dl 688 15.1 105.0 7.67
LAB_Thromb.vert.breite fl 2612 10.9 14.8 1.91
LAB_Ery.verteilungsbreite (VK) % 1377 14.0 19.6 2.07
LAB_Thrombokrit % 1372 0.29 0.96 0.11
LAB_Normoblasten% % 2588 0.0 17.7 0.67
LAB_Normoblasten# /nl 2588 0.0 1.05 0.05
LAB_Magnesium mmol/l 3647 0.84 0.85 0.12
LAB_TSH mU/l 2217 1.14 34.25 2.39
LAB_Harnsäure mg/dl 155 5.1 19.7 1.73
LAB_fT4 pmol/l 2532 16.1 41.6 3.19
LAB_Tissue Polypeptide Antigen U/l 3574 90.0 9012.0 630.89
LAB_CYFRA 21-1 (Roche-Cobas) ng/ml 2035 4.0 1127.7 39.68
LAB_TT3 nmol/l 3351 1.65 6.84 0.45

Continued on next page
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Table A.4 – continued from previous page
Feature #N/As Median Range SD

LAB_TPZ (Quick-Wert) % 1691 104.0 109.0 18.14
LAB_aPTT sec 1718 26.2 141.8 5.12
LAB_INR unknown 1968 1.0 3.34 0.19
LAB_fT3 pmol/l 2920 4.6 15.7 0.98
LAB_Fibrinogen mg/dl 3315 501.0 892.0 186.63
LAB_cBase(Ecf) mmol/l 3915 1.4 30.0 3.74
LAB_pO2 mmHg 3111 75.0 184.0 17.53
LAB_ctCO2 Vol % 3973 58.8 60.1 8.08
LAB_cBase(B) mmol/l 3947 1.6 26.9 3.09
LAB_pH(T) unknown 3902 7.45 0.32 0.05
LAB_Antithrombin-III % 4035 99.0 120.0 16.7
LAB_alkal. Phosphatase (AP) U/l 522 92.0 1117.0 91.7
LAB_Lipase U/l 3527 30.0 2714.0 102.79
LAB_CK U/l 3739 57.0 743.0 75.45
LAB_Chlorid mmol/l 1892 103.0 56.0 4.33
LAB_HbA1c % 4264 6.8 8.1 1.74
LAB_Urin-Spezifisches Gewicht kg/l 3389 1.01 0.06 0.01
LAB_U-Stix-pH unknown 3308 5.5 4.5 0.81
LAB_Leukozyten (Urin-Sed.) /µl 3845 6.0 4482.0 331.91
LAB_Albumin g/dl 2598 4.2 3.2 0.45
LAB_Triglyzeride mg/dl 3969 121.0 616.0 79.43
LAB_Cholesterin (gesamt) mg/dl 3915 188.0 333.0 45.4
LAB_Amylase (-Pankreas) U/l 3636 26.0 679.0 44.5
LAB_Phosphat (anorg.) mg/dl 2935 3.4 6.1 0.64
LAB_Cholinesterase U/ml 3651 7.4 17.3 2.4
LAB_Retikulozyten% % 4093 1.16 15.34 1.3
LAB_Thrombinzeit (TZ) sec 4046 16.8 156.4 13.18
LAB_Bilirubin (direkt) mg/dl 4044 0.19 9.7 1.1
LAB_GLDH U/l 4245 4.8 391.2 55.27
LAB_CEA_combined ng/ml 1283 4.0 88767.6 1738.85
LAB_CA19-9_combined U/ml 2377 14.3 279031.0 7839.33
LAB_CA125_combined U/ml 2617 36.0 27928.0 938.01
LAB_AFP_combined ng/ml 3383 2.4 30676.1 1002.07
LAB_SCC_combined ng/ml 1754 1.0 306.0 10.44
LAB_CA15-3_combined ng/ml 2899 21.0 3961.0 180.01
LAB_NSE_combined ng/ml 1609 25.4 12880.6 450.78
LAB_CA72-4_combined ng/ml 2584 2.4 9506.8 370.77
LAB_PSA_combined ng/ml 3685 0.88 66.4 4.56
LAB_sO2_combined % 3097 95.4 91.3 10.7
LAB_pCO2_combined mmHg 3113 35.0 51.4 5.26
LAB_HCO3-_combined mmol/l 3114 25.4 26.3 2.5
LAB_Kreatinin_combined mg/dl 568 0.75 38.58 0.71
Clinical_Oxygen saturation in Arterial blood % 3186 96.0 64.0 3.44
Clinical_Body temperature Cel 3201 36.4 6.5 0.55
Clinical_Heart rate /min 2709 81.0 116.0 15.26
Clinical_Systolic blood pressure mm[Hg] 3397 121.0 218.0 18.68
Clinical_Diastolic blood pressure mm[Hg] 3397 73.0 153.0 11.38
age_at_ctx 0 63.68 73.01 10.12

Continued on next page
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Table A.4 – continued from previous page
Feature #N/As Median Range SD

Clinical_height 599 1.72 0.43 0.09
Clinical_weight 818 75.0 90.0 16.23
BCA_bone 2532 30.42 58.39 4.76
BCA_muscle 2532 68.63 94.42 14.53
BCA_sat 2532 73.75 356.31 43.87
BCA_vat 2532 42.51 141.89 25.5
BCA_imat 2532 14.66 55.82 7.71
BCA_tat 2532 138.73 472.42 67.33
PD-L1_TPS 3397 5.0 100.0 33.6
Smoking_packyears 2631 40.0 240.0 24.36
Clinical_BMI 886 24.84 33.26 4.62
TTF 0 196.0 5459.0 651.9
OS 0 277.0 5459.0 722.97

Table A.4 Table containing all numeric features with their respective N/A counts, median values, range and standard
deviation.



A Appendix

62

Categorical Variables

Feature #N/As Category Frequencies
ICD_B95 0 0: 4270, 1: 50
ICD_B96 0 0: 4258, 1: 62
ICD_C32 0 0: 4310, 1: 10
ICD_C41 0 0: 4318, 1: 2
ICD_C56 0 0: 4318, 1: 2
ICD_C76 0 0: 4299, 1: 21
ICD_C77 0 0: 3287, 1: 1033
ICD_C78 0 0: 3789, 1: 531
ICD_C79 0 0: 3488, 1: 832
ICD_D41 0 0: 4300, 1: 20
ICD_D50 0 0: 4293, 1: 27
ICD_D61 0 0: 4257, 1: 63
ICD_D62 0 0: 4251, 1: 69
ICD_D63 0 0: 4233, 1: 87
ICD_D64 0 0: 4245, 1: 75
ICD_D68 0 0: 4270, 1: 50
ICD_D69 0 0: 4258, 1: 62
ICD_D70 0 0: 4257, 1: 63
ICD_E03 0 0: 4173, 1: 147
ICD_E05 0 0: 4267, 1: 53
ICD_E11 0 0: 4009, 1: 311
ICD_E66 0 0: 4101, 1: 219
ICD_E78 0 0: 4017, 1: 303
ICD_E79 0 0: 4248, 1: 72
ICD_E83 0 0: 4291, 1: 29
ICD_E86 0 0: 4193, 1: 127
ICD_E87 0 0: 4066, 1: 254
ICD_E89 0 0: 4278, 1: 42
ICD_F10 0 0: 4278, 1: 42
ICD_F17 0 0: 3778, 1: 542
ICD_F32 0 0: 4271, 1: 49
ICD_G40 0 0: 4262, 1: 58
ICD_G47 0 0: 4249, 1: 71
ICD_G62 0 0: 4261, 1: 59
ICD_G81 0 0: 4277, 1: 43
ICD_G93 0 0: 4278, 1: 42
ICD_I10 0 0: 3598, 1: 722
ICD_I11 0 0: 4240, 1: 80
ICD_I20 0 0: 4214, 1: 106
ICD_I25 0 0: 3960, 1: 360
ICD_I26 0 0: 4256, 1: 64
ICD_I34 0 0: 4262, 1: 58
ICD_I35 0 0: 4268, 1: 52
ICD_I48 0 0: 4178, 1: 142
ICD_I49 0 0: 4276, 1: 44
ICD_I50 0 0: 4170, 1: 150
ICD_I70 0 0: 4166, 1: 154

Continued on next page
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Table A.5 – continued from previous page
Feature #N/As Category Frequencies

ICD_I80 0 0: 4271, 1: 49
ICD_J18 0 0: 4234, 1: 86
ICD_J38 0 0: 4270, 1: 50
ICD_J44 0 0: 3768, 1: 552
ICD_J45 0 0: 4282, 1: 38
ICD_J90 0 0: 4207, 1: 113
ICD_J91* 0 0: 4226, 1: 94
ICD_J96 0 0: 4106, 1: 214
ICD_K21 0 0: 4247, 1: 73
ICD_K29 0 0: 4241, 1: 79
ICD_K56 0 0: 4306, 1: 14
ICD_K57 0 0: 4290, 1: 30
ICD_K59 0 0: 4276, 1: 44
ICD_K74 0 0: 4299, 1: 21
ICD_K80 0 0: 4288, 1: 32
ICD_K83 0 0: 4312, 1: 8
ICD_M54 0 0: 4253, 1: 67
ICD_N13 0 0: 4310, 1: 10
ICD_N17 0 0: 4286, 1: 34
ICD_N18 0 0: 4181, 1: 139
ICD_N28 0 0: 4289, 1: 31
ICD_N39 0 0: 4260, 1: 60
ICD_N40 0 0: 4249, 1: 71
ICD_R06 0 0: 4158, 1: 162
ICD_R10 0 0: 4273, 1: 47
ICD_R11 0 0: 4206, 1: 114
ICD_R13 0 0: 4255, 1: 65
ICD_R16 0 0: 4305, 1: 15
ICD_R18 0 0: 4300, 1: 20
ICD_R26 0 0: 4264, 1: 56
ICD_R50 0 0: 4252, 1: 68
ICD_R52 0 0: 4148, 1: 172
ICD_R53 0 0: 4194, 1: 126
ICD_R59 0 0: 4257, 1: 63
ICD_R63 0 0: 4259, 1: 61
ICD_R64 0 0: 4269, 1: 51
ICD_R77 0 0: 4235, 1: 85
ICD_Z12 0 0: 4315, 1: 5
ICD_Z85 0 0: 4142, 1: 178
ICD_Z90 0 0: 4170, 1: 150
ICD_Z93 0 0: 4311, 1: 9
ICD_Z95 0 0: 4079, 1: 241
gender_female 0 0: 2576, 1: 1744
TNM_T 2017 0: 18, 1: 295, 2: 433, 3: 523, 4: 1034
TNM_N 1994 0: 524, 1: 240, 2: 874, 3: 688
TNM_M 1679 0: 982, 1: 1659
TNM_STAGE 1842 1: 48, 2: 158, 3: 613, 4: 1659
Histology_Adenokarzinom 2255 0: 1179, 1: 886

Continued on next page
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Table A.5 – continued from previous page
Feature #N/As Category Frequencies

Histology_Glioblastom 2255 0: 2065
Histology_Astrozytom 2255 0: 2065
Histology_Neuroendokrin 2255 0: 2016, 1: 49
Histology_Plattenepithel 2255 0: 1670, 1: 395
Histology_Kleinzellig 2255 0: 1731, 1: 334
Histology_Melanom 2255 0: 2064, 1: 1
Histology_Duktal 2255 0: 2063, 1: 2
Histology_Mesotheliom 2255 0: 2062, 1: 3
Histology_Leiomyosarkom 2255 0: 2060, 1: 5
Histology_Ewing 2255 0: 2064, 1: 1
Histology_Liposarkom 2255 0: 2065
Cancertype_CCC 1616 0: 2704
Cancertype_HCC 1616 0: 2704
Cancertype_NSCLC 1873 0: 486, 1: 1961
Cancertype_SCLC 1873 0: 1961, 1: 486
Grading_grade 3175 1: 13, 2: 253, 3: 670, 4: 209
ECOG 3280 0: 465, 1: 454, 2: 98, 3: 20, 4: 3
Cancertype_Sarkom 2251 0: 2016, 1: 53
Metastasis_Andere Organe plus ’Pankreas’ 1936 0: 2161, 1: 223
Metastasis_Fern-Lymphknoten 1936 0: 2196, 1: 188
Metastasis_Hirn 1936 0: 1959, 1: 425
Metastasis_Knochen 1936 0: 1857, 1: 527
Metastasis_Leber 1936 0: 2056, 1: 328
Metastasis_Lunge 1936 0: 2014, 1: 370
Metastasis_Nebennieren 1936 0: 2082, 1: 302
Metastasis_Peritoneum 1936 0: 2359, 1: 25
Metastasis_Pleura 1936 0: 2162, 1: 222
TP53 3618 0: 310, 1: 392
KRAS 3621 0: 481, 1: 218
EGFR 3617 0: 607, 1: 96
MSI 4316 0: 2, 1: 2
OPS_1-100 0 0: 4271, 1: 49
OPS_1-204 0 0: 4277, 1: 43
OPS_1-275 0 0: 4216, 1: 104
OPS_1-420 0 0: 4309, 1: 11
OPS_1-422 0 0: 4293, 1: 27
OPS_1-424 0 0: 4307, 1: 13
OPS_1-559 0 0: 4316, 1: 4
OPS_1-610 0 0: 4262, 1: 58
OPS_1-611 0 0: 4264, 1: 56
OPS_1-620 0 0: 4145, 1: 175
OPS_1-630 0 0: 4268, 1: 52
OPS_1-632 0 0: 4298, 1: 22
OPS_1-661 0 0: 4302, 1: 18
OPS_1-710 0 0: 4262, 1: 58
OPS_1-901 0 0: 4269, 1: 51
OPS_3-992 0 0: 4295, 1: 25
OPS_5-010 0 0: 4185, 1: 135

Continued on next page
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Table A.5 – continued from previous page
Feature #N/As Category Frequencies

OPS_5-015 0 0: 4201, 1: 119
OPS_5-021 0 0: 4230, 1: 90
OPS_5-155 0 0: 4316, 1: 4
OPS_5-156 0 0: 4309, 1: 11
OPS_5-399 0 0: 4186, 1: 134
OPS_5-401 0 0: 4280, 1: 40
OPS_5-402 0 0: 4299, 1: 21
OPS_5-403 0 0: 4304, 1: 16
OPS_5-469 0 0: 4311, 1: 9
OPS_5-501 0 0: 4317, 1: 3
OPS_5-511 0 0: 4309, 1: 11
OPS_5-541 0 0: 4302, 1: 18
OPS_5-852 0 0: 4306, 1: 14
OPS_5-870 0 0: 4313, 1: 7
OPS_5-894 0 0: 4280, 1: 40
OPS_5-895 0 0: 4280, 1: 40
OPS_5-900 0 0: 4304, 1: 16
OPS_5-903 0 0: 4297, 1: 23
OPS_5-983 0 0: 4290, 1: 30
OPS_5-984 0 0: 4122, 1: 198
OPS_5-988 0 0: 4267, 1: 53
OPS_5-989 0 0: 4317, 1: 3
OPS_8-137 0 0: 4309, 1: 11
OPS_8-522 0 0: 3725, 1: 595
OPS_8-526 0 0: 4316, 1: 4
OPS_8-527 0 0: 4020, 1: 300
OPS_8-528 0 0: 4033, 1: 287
OPS_8-529 0 0: 3981, 1: 339
OPS_8-530 0 0: 4312, 1: 8
OPS_8-542 0 0: 4198, 1: 122
OPS_8-543 0 0: 4061, 1: 259
OPS_8-701 0 0: 4256, 1: 64
OPS_8-800 0 0: 4292, 1: 28
OPS_8-831 0 0: 4109, 1: 211
OPS_8-83b 0 0: 4238, 1: 82
OPS_8-900 0 0: 4157, 1: 163
OPS_8-902 0 0: 4311, 1: 9
OPS_8-910 0 0: 4314, 1: 6
OPS_8-919 0 0: 4281, 1: 39
OPS_8-925 0 0: 4232, 1: 88
OPS_8-930 0 0: 4237, 1: 83
OPS_8-931 0 0: 4175, 1: 145
Smoking_smoker 2136 0: 115, 1: 2069
ctx_CISplatin 0 0: 2009, 1: 2311
ctx_PACLitaxel 0 0: 2975, 1: 1345
ctx_DOCEtaxel 0 0: 4267, 1: 53
ctx_Pemetrexed 0 0: 3500, 1: 820
ctx_Pembrolizumab (MK3475) 0 0: 3959, 1: 361

Continued on next page
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Table A.5 – continued from previous page
Feature #N/As Category Frequencies

ctx_CARBOplatin 0 0: 3236, 1: 1084
ctx_Ifosfamid 0 0: 4279, 1: 41
ctx_DOXOrubicin (-HCl) 0 0: 4267, 1: 53
ctx_Atezolizumab (MPDL3280A) 0 0: 4208, 1: 112
ctx_Bevacizumab 0 0: 4273, 1: 47
ctx_PACLitaxel-Nanopartikel 0 0: 4307, 1: 13
ctx_Durvalumab (MEDI4736) 0 0: 4233, 1: 87
ctx_Oxaliplatin 0 0: 4314, 1: 6
ctx_Folinsäure (aus Calciumfolinat) 0 0: 4312, 1: 8
ctx_5-Fluorouracil 0 0: 4305, 1: 15
ctx_VinORELBin (aus -tartrat) 0 0: 3948, 1: 372
ctx_MitoMYcin 0 0: 4316, 1: 4
ctx_Dacarbazin 0 0: 4318, 1: 2
ctx_Gemcitabin 0 0: 4145, 1: 175
ctx_VinCRIStin (-sulfat) 0 0: 4297, 1: 23
ctx_Cyclophosphamid 0 0: 4298, 1: 22
ctx_Epirubicin (-HCl) 0 0: 4316, 1: 4
ctx_Nivolumab 0 0: 4193, 1: 127
ctx_Irinotecan (-HCl 3Wasser) 0 0: 4305, 1: 15
ctx_Melphalan 0 0: 4320
ctx_Ipilimumab 0 0: 4318, 1: 2
ctx_Topotecan 0 0: 4259, 1: 61
ctx_Trastuzumab 0 0: 4317, 1: 3
ctx_PEG liposomales Doxorubicin (-HCl) (Caelyx®) 0 0: 4317, 1: 3
ctx_Cetuximab 0 0: 4316, 1: 4
ctx_etoposid 0 0: 3639, 1: 681
rezept_Capecitabin 0 0: 4315, 1: 5
rezept_Dabrafenib 0 0: 4315, 1: 5
rezept_Erlotinib 0 0: 4221, 1: 99
rezept_Fulvestrant 0 0: 4319, 1: 1
rezept_Imatinib 0 0: 4319, 1: 1
rezept_Lenvatinib 0 0: 4320
rezept_Letrozol 0 0: 4318, 1: 2
rezept_Lomustin 0 0: 4319, 1: 1
rezept_Nintedanib 0 0: 4317, 1: 3
rezept_Pazopanib 0 0: 4320
rezept_Sorafenib 0 0: 4320
rezept_Sunitinib 0 0: 4316, 1: 4
rezept_Tamoxifen 0 0: 4319, 1: 1
rezept_Temozolomid 0 0: 4310, 1: 10
rezept_Trametinib 0 0: 4315, 1: 5
ctx_other 0 0: 4291, 1: 29
rezept_other 0 0: 4176, 1: 144
TTF_Event 0 0: 1215, 1: 3105
death_observed 0 0: 1567, 1: 2753
Table A.5 Table containing a summary of all categorical variables, including their N/A counts and respective cate-
gory frequencies.
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A.3 Code Listings

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from torch_geometric.nn import GCNConv
5

6

7 class GCN(torch.nn.Module):
8 """ Graph Convolutional Network """
9 def __init__(self , dim_in , dim_h , dim_out):
10 super().__init__ ()
11 self.gcn1 = GCNConv(dim_in , dim_h)
12 self.batch_norm1 = nn.BatchNorm1d(dim_h)
13 self.gcn2 = GCNConv(dim_h , dim_out)
14 self.batch_norm2 = nn.BatchNorm1d(dim_out)
15 self.optimizer = torch.optim.Adam(self.parameters (), lr=0.01 ,

weight_decay =2e-3)
16 self.dp_rate = 0.35
17

18 def forward(self , x, edge_index):
19 h = F.dropout(x, p=self.dp_rate , training=self.training)
20 h = self.gcn1(h, edge_index).relu()
21 h = self.batch_norm1(h)
22 h = F.dropout(h, p=self.dp_rate , training=self.training)
23 h = self.gcn2(h, edge_index)
24 h = self.batch_norm2(h)
25 return h, F.log_softmax(h, dim =1)

Listing A.1 GCN architecture for treatment failure time classification.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from torch_geometric.nn import GINConv
5

6

7 class GIN(torch.nn.Module):
8 """ Graph Isomorphism Network """
9 def __init__(self , dim_in , dim_h , dim_out):
10 super(GIN , self).__init__ ()
11 self.gin1 = GINConv(nn.Sequential(
12 nn.Linear(dim_in , dim_h),
13 nn.ReLU(),
14 nn.Linear(dim_h , dim_h)
15 ))
16 self.batch_norm1 = nn.BatchNorm1d(dim_h)
17 self.gin2 = GINConv(nn.Sequential(
18 nn.Linear(dim_h , dim_h),
19 nn.ReLU(),
20 nn.Linear(dim_h , dim_out)
21 ))
22 self.batch_norm2 = nn.BatchNorm1d(dim_out)
23 self.optimizer = torch.optim.Adam(self.parameters (), lr=0.01 ,

weight_decay =2e-3)
24 self.dp_rate = 0.35
25

26 def forward(self , x, edge_index):
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27 h = F.dropout(x, p=self.dp_rate , training=self.training)
28 h = self.gin1(h, edge_index).relu()
29 h = self.batch_norm1(h)
30 h = F.dropout(h, p=self.dp_rate , training=self.training)
31 h = self.gin2(h, edge_index)
32 h = self.batch_norm2(h)
33 return h, F.log_softmax(h, dim =1)

Listing A.2 GIN architecture for treatment failure time classification.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from torch_geometric.nn import GATv2Conv
5

6

7 class GAT(torch.nn.Module):
8 """ Graph Attention Network """
9 def __init__(self , dim_in , dim_h , dim_out , heads =8):
10 super().__init__ ()
11 self.gat1 = GATv2Conv(dim_in , dim_h , heads=heads)
12 self.batch_norm1 = nn.BatchNorm1d(dim_h * heads)
13 self.gat2 = GATv2Conv(dim_h * heads , dim_out , heads =1)
14 self.batch_norm2 = nn.BatchNorm1d(dim_out)
15 self.optimizer = torch.optim.Adam(self.parameters (), lr=0.01 ,

weight_decay =2e-3)
16 self.dp_rate = 0.35
17

18 def forward(self , x, edge_index):
19 h = F.dropout(x, p=self.dp_rate , training=self.training)
20 h = self.gat1(h, edge_index)
21 h = F.elu(h)
22 h = F.dropout(h, p=self.dp_rate , training=self.training)
23 h = self.gat2(h, edge_index)
24 h = self.batch_norm2(h)
25 return h, F.log_softmax(h, dim =1)

Listing A.3 GAT architecture for treatment failure time classification.

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5

6 class MLP(torch.nn.Module):
7 """Multi -Layer Perceptron """
8 def __init__(self , dim_in , dim_h , dim_out):
9 super().__init__ ()
10 self.linear1 = torch.nn.Linear(dim_in , dim_h)
11 self.batch_norm1 = torch.nn.BatchNorm1d(dim_h)
12 self.dropout1 = torch.nn.Dropout (0.35)
13 self.linear2 = torch.nn.Linear(dim_h , dim_h)
14 self.batch_norm2 = torch.nn.BatchNorm1d(dim_h)
15 self.dropout2 = torch.nn.Dropout (0.35)
16 self.linear3 = torch.nn.Linear(dim_h , dim_out)
17 self.optimizer = torch.optim.Adam(self.parameters (), lr=0.01 ,

weight_decay =2e-3)
18

19 def forward(self , x):
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20 h = F.relu(self.linear1(x))
21 h = self.batch_norm1(h)
22 h = self.dropout1(h)
23 h = F.relu(self.linear2(h))
24 h = self.batch_norm2(h)
25 h = self.dropout2(h)
26 h = self.linear3(h)
27 return h, F.log_softmax(h, dim =1)

Listing A.4 MLP architecture for treatment failure time classification.
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A.4 Source Code Access

The project’s source code is available on GitHub: https://github.com/aidos-lab/PSIM/tree/main. The repos-
itory contains the data preprocessing scripts, implemented algorithms and the experimental setups used
in this work. Access to the repository can be provided upon request.

https://github.com/aidos-lab/PSIM/tree/main
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Glossary

C-Reactive Protein Proteins in the blood plasma that are elevated in association with inflammatory re-
sponse. 39, 40, 41

Carboplatin Chemotherapy medication used to treat various cancers. 38, 41

Cisplatin Chemotherapy medication used to treat cancers. 38, 41

Concordance Index A metric designed to evaluate censored data. 19, 20, 24, 29, 36, 37, 48

ECOG Eastern Cooperative Oncology Group performance status. 32, 33

Erythrocytes Red blood cells. 38

Gamma Glutamyltransferase Enzyme that plays an important role in liver function and detoxification.
38

Granulocytes A type of white blood cells that is important for the body’s immune response. 38

Hematoxylin and Eosin stain One of the major tissue stains used in histology. 1

Hemoglobin Oxygen-transport protein present in red blood cells. 38

Lactate Dehydrogenase Enzyme which is released during tissue damage. 38, 39, 40, 41

Leukocytes White blood cells. 39

Lymphocytes A type of white blood cells involved in the body’s immune response. 38, 39

MCHC Mean Corpuscular Hemoglobin Concentration. 40

Mean Corpuscular Volume Measure of average volume of a red blood cell used for classification of blood
anemia. 38

Monocytes Largest type of white blood cells. 39

Neutrophil Granulocyte Predominant subtype among granulocytes. 40, 41

Vinorelbin Chemotherapy medication used to treat various cancers. It is commonly used for non-small-
cell lung cancer. 41
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Acronyms

AI Artificial Intelligence. 1, 3

API Application Programming Interface. 11

BCA Body Composition Analysis. 31, 35

BMI Body Mass Index. 31

BN Batch Normalization. 10, 11

BS Brier Score. 20

CHF Cumulative Hazard Function. 23

CPH Cox Proportional Hazards Model. 3, 19, 21, 25, 27, 29, 48

CPU Central Processing Unit. 1, 11

CT Computed Tomography. 3

CV Cross Validation. 29, 36, 43, 45

DL Deep Learning. 2, 3, 5, 10, 11, 12, 19

DT Decision Tree. 22, 23, 24, 33, 48

EGFR Epidermal Growth Factor Receptor. 32

EMD Earth Mover’s Distance. 17

FDA Food and Drug Administration. 3

GAT Graph Attention Network. 14, 30, 45, 46

GCN Graph Convolutional Network. 14, 30, 45, 46

GIN Graph Isomorphism Network. 14, 30, 45, 46

GNN Graph Neural Network. 5, 13, 14, 15, 30, 45, 47, 52

GPU Graphics Processing Unit. 1, 7, 11, 26

HR Hazard Ratio. 21

IBS Integrated Brier Score. 20, 29, 36, 37

ICD International Classification of Disease. 31, 35, 45

LLM Large Language Model. 1

LP Linear Program. 16, 17

ML Machine Learning. 3, 5, 16, 24, 27
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MLP Multilayer Perceptron. 5, 7, 8, 10, 30, 43, 45, 46, 51

MSE Mean Squared Error. 8, 20

MSI Microsattelite Instability. 32

N/A Missing Value. 29, 32, 33, 35, 36, 37, 38, 39, 41, 48

NLP Natural Language Processing. 5, 7

NN Neural Network. 3, 5, 7, 8, 9, 10, 11, 14, 21, 26, 27, 29, 37

NSCLC Non-Small Cell Lung Cancer. 2, 46, 48

OPS Operation and Procedure Classification System. 31, 35, 45

OT Optimal Transport. 5, 16, 17, 18, 29, 48

PD-L1_TPS Programmed Death-Ligand 1 Tumor Proportion Score. 32

RF Random Forest. 3, 23

RSF Random Survival Forest. 3, 19, 21, 23, 29, 36, 37, 38, 39, 40, 41, 48, 51

SCLC Small Cell Lung Cancer. 2, 46, 48

SHAP SHapley Additive exPlanations. 27, 41, 51

TPS Tumor Proportion Score. 32

UHE University Hospital Essen. 2, 3, 13, 19, 26, 29, 35, 41, 43, 48, 51, 52

UOT Unbalanced Optimal Transport. 18, 29, 30, 43, 45, 46, 47, 48, 51, 52, 53

WL Weisfeiler-Leman. 14

XGB Extreme Gradient Boosting. 24, 25, 26, 48

XGBSE XGBoost Survival Embeddings. 21, 25, 26, 29, 36, 48, 51
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