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Abstract

The spread of antimicrobial resistance across the world poses one of the biggest threats to mod-
ern medicine. The severity of this phenomenon has sparked research on machine-learning ap-
proaches predicting the resistance attributes of microbe species. Implementing resistance clas-
sification into the clinical workflow necessitates fast predictions and, thus, fast retrieval of data
representing the microbes. Matrix-assisted laser desorption/ionisation time-of-flight mass spec-
trometry provides mass spectra of microbe species within under 24 hours. Such data is success-
fully used to predict the resistance of microbes from one location. However, the challenge remains
that microbe spectra differ depending on their location of retrieval, present classifiers are not able
remedy these discrepancies in spectra and thus fail to consistently classify microbes using data
from multiple locations; their generalisation ability is weak. Here, we exhibit model exploration
and ablation of the deep convolutional neural networks LeNet5, AlexNet, DenseNet and Vgg16
to increase the generalisation performance and set the basis for future transfer learning model ar-
chitectures. The classifiers’ performances are being compared to previous contributions in terms
of AUROC and AUPRC performance. We validate our models using ten different random train-
test splits for 16 different train-test scenarios from the four domains DRIAMS-A–DRIAMS-D
provided by the DRIAMS dataset. Our baseline model, a multilayer perceptron, sets the upper
bound of AUROC performance with a mean AUROC value of 0.67, whereas the LeNet5 and
AlexNet classifier reach scores of 0.66 and 0.62, respectively. The deep convolutional neural net-
works perform very similarly to classifiers from previous work using the DRIAMS-Dataset. This
implies that the resistance mechanisms within the data cannot be identified by various models,
suggesting that the data possibly does not provide this information.
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1 Introduction

The WHO approximates that 1.43% of the world’s population consumes antibiotics on any given
day of the year; in other words, precisely 11.207.900 people undergo antibiotic treatment daily
[5]. First and foremost, this fact highlights the remarkable progress made in modern medicine
through the exploration of antibiotics. Still, it also foretells a picture of crisis when imagining a
world without antibiotics.

In recent years, scientists have observed growing numbers of resistant microbes against various
antibiotics, and they are currently speaking of the Antimicrobial Resistance Crisis. Amongst
others, a critical variable in combating advancing resistance is fast and narrow antibiotic treat-
ment, as opposed to broad antibiotic treatment. In this thesis, we roughly describe a workflow to
realise faster antimicrobial resistance predictions in clinically relevant scenarios. Our focus lies on
machine learning methods designed to predict the resistance values of specific species–antibiotic
combinations. This application of machine learning has gained significant attention in recent
years, especially when predicting on genome sequencing data of microbes. Yet, the acquisition of
MALDI-TOF spectra of microbes is much faster than, for example, genomic sequencing; there-
fore, using MALDI-TOF spectral data enables more rapid predictions. Accordingly, we use and
extend the prior publication "Direct antimicrobial resistance prediction from clinical MALDI-
TOF mass spectra using machine learning"[38], which provides preprocessing of MALDI-TOF
spectra as well as numerous machine learning approaches.

An ever-occurring challenge is that classifiers can predict very well on specific datasets and
specific species–antibiotic combinations but fail to generalise to other unseen datasets. Hence,
our main objective is to increase our classifier’s generalisation performance on our chosen dataset
(DRIAMS); for this reason, we primarily explore deep neural networks in the given context. More
precisely, we begin by applying various deep convolutional neural network classifiers to our dataset.
Subsequently, we analyse the corresponding results and model behaviour more thoroughly by
conducting an ablation study. In general, we find that deep convolutional neural networks can
compete with the existing traditional machine learning methods, like MLPs, for AMR predic-
tion using the DRIAMS dataset. As we strongly depend on the need for low computational com-
plexity, we identify a modified version of the LeNet5 model architecture as our most performant
model through our ablation study, achieving a mean AUROC score of 0.66. In comparison, the
MLP achieves an AUROC of 0.67. Nevertheless, we observe that the differences in model per-
formance are marginal when applying different model architectures.

This thesis aims to demonstrate the potential of deep convolutional neural networks applied
to AMR prediction tasks. An essential component of this task is the DRIAMS dataset, we de-
tail the data characteristics by explaining the fundamental concepts AMR, MALDI-TOF Mass
Spectrometry and binnning. To set the context, we give an overview of competing machine learn-
ing methods and give a detailed explanation of the publications we extend, as this is the basis for
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1 Introduction

our work. We reveal our data preparation steps using PyTorch and detail our model architectures
and parameters. Finally, we exhibit the experiments that were conducted, as well as our classifiers’
performances and ablation results.
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2 Background

2.1 Antimicrobial Resistance

Microbes, meaning organisms like bacteria, viruses, parasites and fungi[17] have the ability to
adapt to drugs over time as they undergo adaptive evolutionary changes[14]. Due to these changes,
microbes can become unresponsive or less responsive to drugs they were initially sensitive to,
namely to antimicrobials[14]. The result of this genomic change is known as the organism’s direct
antimicrobial resistance[17]. Antimicrobial resistance has been declared one of the gravest global
public health and development threats by numerous organisations and researchers[23] such as
the WHO[26].

The AMR crisis is of great extent because it jeopardises the gains of modern medicine: AMR
not only affects the treatment of a manifold of diseases, but an increased occurrence of AMR also
increases the risk for routine medical procedures such as surgery, caesarean sections and cancer
chemotherapy possibly leading to grave illness or death[24][17]. To put the threat topublic health
into perspective, Murray et al.[23] estimate that AMR specifically attributed to bacteria was, di-
rectly and indirectly, responsible for about five million deaths in 2019 (solely direct: 1.270.000,
total: 4.950.000) [23] and a report commissioned by the UK Prime minister from 2016 suggests
that 10 million deaths globally will be attributable to AMR per year by 2050[24].

The threat to development is portrayed in a report by the World Bank[3]; they estimate that
by 2050, the annual global gross domestic product will fall by 1.1% in the best case, by 3.8% in
the worst case, relative to the base-case of no AMR. They also state that low-income countries will
suffer more significant drops in economic growth and experience a greater increase in healthcare
expenditures (low-income: 25%, middle income: 15%, high-income: 6%)[3].

Murray et al.[23] published an extensive study on the burden of AMR in 2022, showing that
six pathogens are responsible for more than 250,000 deaths associated with AMR. These are the
following bacteria sorted in the order of number of deaths descendingly: E. coli, Staphylococcu au-
reus, K. pneumoniae, S. pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa,
together, they make up 929,000 of 1.27 million direct deaths and 3.57 million of 4.95 million
total deaths globally in 2019. The deathly pathogens are distributed differently across the globe;
in the high-income super-region, S. Aureus (constituting 26.1% of deaths attributable to AMR
and 25.4% of deaths associated with AMR) and E. coli (constituting 23.4% of deaths attributable
to AMR and 24.3% of deaths associated with AMR) contribute to half of the deaths attributable
to AMR. In sub-Saharan Africa, per contra, S. pneumoniae (15.9% of the deaths attributable to
AMR and 19.0% of the deaths associated with AMR) and K. pneumoniae (19.9% of the deaths at-
tributable to AMR and 17.5% of the deaths associated with AMR). The leading pathogens make
up a smaller proportion of the AMR burden. Consequently, we will focus on K. pneumoniae
and E. coli in this thesis.
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2 Background

Factors affecting the spread of AMR are predominantly the "misuse and overuse of antibi-
otics"[14] in humans[14] as well as in animal and plant care[13][24]. In humans, treatments often
rely on broad-spectrum antibiotics to quickly limit the infection-related risk to the patient[14], this
unnecessary, indiscriminate broad antibiotic use indirectly facilitates antibiotic resistance[38][13].
As Caroline Weis et al.[38] point out, an important aspect in inhibiting AMR is the fast availabil-
ity of resistance profiles of bacteria to be able to incorporate this knowledge into diagnosis and
treatment. Fast availability (under 24 hours) would enable a narrow antibiotic use and accelerate
infection prevention measures.[38]

2.2 MALDI-TOFMass Spectrometry

The data we utilise in this work are MALDI-TOF spectra. These spectra are produced in a process
called MALDI-TOF mass spectrometry, which characterises microorganisms, including bacteria,
fungi, and viruses[7]. It creates highly specific microbe-spectra in only 24 hours[38]. Due to its low
cost, reliability [42] and high throughput[40] MALDI-TOF mass spectrometry is an indispens-
able tool in various fields such as medical diagnostics, biodefense, environmental monitoring, and
food quality control.[7, 32] In the following we want to further explain the terms Mass spectrom-
etry, matrix-assisted laser desorption ionisation (MALDI) and time-of-flight (TOF):
Mass spectrometry creates mass spectra from sample molecules, this process can be divided into
the following phases: ionisation, ion separation, detection[7]. There are multiple ways to achieve
ionisation, a widely used method for microbial species identification is MALDI, a soft ionisation
technique using laser impulses [7, 32]. The sample is mixed with the matrix on a conductive metal
plate, resulting in crystallisation. This mixture is introduced to the mass spectrometer. The afore-
mentioned laser, commonly a nitrogen laser, bombards the sample mixture with high energy laser
pulses. This is a soft ionisation technique[34], as the matrix absorbs the energy from the laser
and transmits it to the sample, while only minimally fragmenting the molecules. This ionises and
desorbs the sample into the gas phase, resulting in predominantly singly charged sample ions[32,
34].

After Ionisation the mass spectrometer’s electrostatic field accelerates the analytes through a
metal flight tube until they reach the detector device which monitors the arriving ions.[7] As the
ions have the same charge (z) but different masses, the acceleration leads to the ions seperating ac-
cording to their mass (m) because "the time of flight is proportional to the square root of m/z"[7]
.[7, 32] The resulting mass spectrum shows the ion signal as a function of the m/z–ratio, giving in-
sights into the contents of the sample.[42] In spectra acquired by MALDI-TOF, spectrum spikes
range between 2,000-20,000 Da.[7]
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2.2 MALDI-TOF Mass Spectrometry

Figure 2.1: This figure is reproduced from Li et al. [18], it shows the process of MALDI-TOF Mass Spec-
trometry: A laser beam ionises the sample in the Sample Ionization Chamber. Electrodes then
accelerate the ions, which leads to a separation within the Mass Analyzer. At the end of the Mass
Analyzer, the Ion Detector generates mass spectra from the detected ions. [18]
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2 Background

2.3 DRIAMSDataset

In the scope of this thesis, we use the data provided by the DRIAMS Dataset. The DRIAMS-
dataset comprises a database of antimicrobials’ resistance information and MALDI-TOF mass
spectra. The data was collected in 2021 and the database was published in 2022. It contains
mass spectra profiles from the most relevant isolates in clinical settings (bacteria) coupled with
antimicrobial susceptibility phenotypes.[37]

In total, they collected 300, 000 mass spectra with more than 750, 000 antimicrobial resis-
tance phenotypes from the daily clinical routines of four microbiological laboratories in Switzer-
land: University Hospital Basel (DRIAMS-A), Canton Hospital Basel-Land (DRIAMS-B), Can-
ton Hospital Aarau (DRIAMS-C), the laboratory service provider Viollier (DRIAMS-D), which
are all ISO/IEC 17025 accredited diagnostic laboratories. The University Hospital Basel and
Conton Hospital Aarau both use the Microfex Biotyper LT/SH System MS, the laboratory ser-
vice provider Viollier uses Microfex smart LS System, the Canton Hospital Basel-Land uses both
Microfex Biotyper systems in parallel. Both systems are Microfex Biotyper Systems by Bruker
Daltonics, which are widely used MALDI-TOF mass spectrometry systems in microbiological
routine diagnostics in both North America and Europe. They were run in AutoXecute acqui-
sition mode and serviced according to the manufacturer’s standard. Although they use different
laser gases, the systems use the same reference spectra database, which is why data from both sys-
tems was included. They use the Microfex Biotyper Database (MBT 7854 MSP Library, BDAL
V8.0.0.0_7311-7854, research-use only) to identify the species of each mass spectrum.

The corresponding AMR profiles were collected in the same institutions in the same time
frame. They used microdilution assays (VITEK 2, BioMérieux), minimum inhibitory concen-
tration stripe tests or disc diffusion tests for determining the bacteria’s resistance categories. With
the exception of yeast, which was determined using Sensititre Yeast One (Thermofisher).

Furthermore, they use breakpoint measurements to interpret an organism as susceptible, inter-
mediate, or resistant. Clinical breakpoints are pre-determined ranges used to classify the level of
resistance[27], in this case they classify according to the EUCAST version using the most current
breakpoint table update 56 (European Committee on Antimicrobial Susceptibility Testing) and
CLSI (2015 M45; 2017 M60) recommendations.

To ensure equal quality of data at the different sites, empty spectra and calibration spectra are
disregarded in further analysis.[38] Data analysis with the goal of AMR prediction necessitates
that the dataset contains both, the mass spectra of bacteria, a biomolecule, and the bacterium’s
corresponding resistance labels. These are provided in the form of antimicrobial resistance pro-
files. The spectra and AMR profiles are stored in different databases in all 4 sites, therefore a
matching procedure is undergone: The DRIAMS dataset is made up of files that contain the
spectra without the corresponding genus and files that contain the species’ genus and its AMR
profiles, which they call the "laboratory report". For every MALDI-TOF mass spectrometry of a
patient’s probe, the Bruker Microflex system detects the species, which they then add to the ‘lab-
oratory report’ as well as the AMR profiles, which are obtained in individual experiments. There
is no link required between the spectrum file and the laboratory entry after the species is entered.
Each entry in the laboratory report includes a code, which they refer to as ‘sample-ID’, it is the
code that links an entry and a patient or their sample.
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2.4 Preprocessing and Binning of Spectra

dataset total

Escherichia coli - Ceftriaxone (E-CEF) 4961

Klebsiella pneumoniae - Ceftriaxone (K-CEF) 2860

Table 2.1: Number of samples by species-antibiotic combination in the DRIAMS dataset

This code may be ambiguous because there can be multiple experiments using one sample, or
multiple samples of one patient. Furthermore, the spectra recorded by the Bruker Microflex sys-
tems were labeled with an ambiguous, that is, non-unique, code corresponding to the non-unique
sample ID in the laboratory report. Therefore the utilised matching strategy to link mass spectra
to their AMR profiles, is to create a unique identifier, in this case the tuple of the genus of the
species and the sample ID. Using the genus and not the species in the identifier allows additional
flexibility, as the Microflex Biotyper may provide a more accurate label, due to more extensive
microbiological testing, which would mean that the species in the laboratory report differs from
the species in the Microflex Biotyper System. They reanalyse the mass spectra with the University
Hospital Basel Bruker library and determine the species and genus label to then use this informa-
tion to create the unique identifier (genus, code), a tupel, to pair the spectrum with the corre-
sponding AMR profile. Multiple IDs only exist if the probe contains multiple genera, leading to
multiple measurements. Cases in which the identifier was not unique were omitted. For details
on each step of the matching procedure, please see the referenced paper [38].

In the scope of this thesis we limit ourselves to the species-antibiotic combinations: E. coli-
Ceftriaxone and K. pneumoniae-Ceftriaxone. Both species are globally present and highly rele-
vant, Ceftriaxone is a broad-spectrum beta-lactam antibiotic, therefore the combinations act as
markers for broad-spectrum beta-lactam antibiotic resistance [38]. The whole DRIAMS dataset
comprises 4961 samples for the species-antibiotic combination E. coli-Ceftriaxone and 2860 sam-
ples for K. pneumoniae-Ceftriaxone 2.1.

2.4 Preprocessing and Binning of Spectra

The spectra within the DRIAMS database have already undergone preprocessing steps. They
were obtained in the Bruker Flex data format from the Bruker Flex machine. They were then
preprocessed using the R package MaldiQuant58 v1.19 in the following way:

1. Variance stabilisation of intensities using the square-root method

2. Smoothing via Savitzky-Golay algorithm with a half-window-size of 10

3. Baseline correction by running 20 iterations of the SNIP algorithm

4. Calibration of the intensities using the total ion current (TIC), meaning the sum of all
ionic currents of ions contributing to a mass-spectrum

5. Spectra trimming to mass-to-charge ratios within a range of 2,000-20,000 Da

7



2 Background

Each spectrum consists of a set of n measurements which correspond to a mass-to-charge ratio rn
and the intensity of the ratio in. However, there is no fixed frame or range of m/z ratios which are
measured for each species. Hence the dimensionality and spacing of the measurements differ. In
the DRIAMS dataset, they include mass spectra in their raw version without any preprocessing
as well as binned versions of the spectra. This is necessary because the used machine learning
methods require feature vectors of fixed dimensionality. To remedy this, Weis et al.[38] bin the
intensity measurements using a bin size of 3 Da in the range of 2, 000 Da to 20, 000 Da.The
size 3 Da is big enough not to impede computational tractability but small enough to allow for
separation of mass peaks. Binning is achieved by splitting the values within the range limits into
disjoint, equal-sized bins along the m/z axis and then calculating the sum of the intensities of all
measurements assigned to the same bin. This results in 6, 000 bins in our case, we therefore work
with feature vectors comprising 6, 000 features.

Lastly, the categories of the AMR profiles, namely resistant (R), intermediate (I) and suscep-
tible (S), are binarised during data input to create a binary classification scenario. The classes re-
sistant and intermediate become class 1 and susceptible becomes class 0, as an antibiotic can be
applied if the bacterium is susceptible but not in the intermediate nor the resistant case. Addition-
ally, the intermediate category is usually classified as resistant in clinical practice because EUCAST
v6–v8 has higher minimum inhibitory concentrations (MICs) meaning that a patient would have
to be treated using a higher antibiotic drug concentration. Due to safety reasons, this is avoided
to ensure an adequate safety padding when dealing with high antibiotic drug concentrations.[38]

Figure 2.2: Modified from Weis et al. [38]. The original image was adapted to include our machine learn-
ing models and ablation study. This image contextualises our implementation into the clinical
work-flow, beginning with the data collection and ending with the result interpretation.

8



3 RelatedWork

Battling the AMR crisis is critical to uphold the state of the art of modern medicine[3], in this con-
text artificial intelligence has emerged as a powerful tool. One fostering factor is the availability of
big amounts of data to feed into AI algorithms.[1] However the research landscape concentrating
on practical applications of resistance predictions such as diagnosis and treatment remains sparse
and mainly unsuccessful.[1] One significant step in the direction of practical application is the
use of fast data retrieval methods, such as MALDI-TOF, therefore we focus on machine learning
predictions for AMR using bacterial MALDI-TOF spectra.

3.1 TraditionalMachine LearningMethods: RF, SVM, DT,
KNN

The body of research utilises a group of common machine learning methods for resistance pre-
diction of specific bacterium-drug combinations to make comparison possible. As Weis et al.[41]
show, KNN, SVM, LR, DT and RF make up for more than 70% of experiments. In this way,
Wang et al. [35] implement DT, KNN, RF, and SVM to predict methicillin-resistant S. aureus re-
sulting in a leading AUROC value of 0.8450 (RF). Accordingly, Feucherolle et al. [9] successfully
perform predictions using LR, RF and naive bayes for bacteria C. coli and C. jejuni combined with
Ciprofloxacin, or Tetracycline reaching AUROC values of 0.87, 0.83, and 0.88, 0.80 respectively.

Furthermore, many approaches try increasing the performance of said algorithms by applying
changes to the input spectra, such as mass selection, persistence transformation[39], binning of
spectra[44] or train-test split stratification by using an amount of k clusters and labelling each
cluster according to phylogeny. Weis et al. [40] use the latter together with classifiers like LR and
GP-PIKE, the Gaussian process (GP) in combination with the Peak Information Kernel (PIKE).
PIKE assesses the similarity between MALDI-TOF spectra of unfixed lengths by creating a fea-
ture map from the space of functions into L2(R). In this case, the function is a sum of Dirac
delta functions, one function per m/z value, with scale factors that take into account the inten-
sity (height) of the peak (Dirac delta functions are approximated by L2(R) functions). Lastly,
they calculate the inner product of L2(R) space of two spectra, which were transformed into
L2(R) by the feature map. This results in the similarity measure. [39] This method also enables
the calculation of uncertainty measures, which is an important variable for clinical application
[40]. A general shortcoming of the mentioned approaches is that the acquired models are not
applicable to other prediction scenarios, meaning changed variables like antibiotic-species com-
binations, locations of data collection, Mass Spectrometer manufacturer or even train-test splits.
More precisely, when using the GP-PIKE, the optimal parameters of one data split applied to an-
other data split lead to convergence issues and consequently varying performance scores; added
methods like hierarchical stratification fail to reduce the standard deviation between the results of

9
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different data splits. One related problem is that data sets can be unbalanced and contain spectra
of isolates that are not sufficiently representative. The presented methods are not able to compen-
sate for these problems and, therefore, do not yet provide clinically applicable solutions for rapid
resistance predictions.

paper bacterium antibiotic classifier metric performance

Wang et
al.[35]

S. aureus Methicillin DT, KNN,
RF, SVM

AUROC 0.74, 0.82,
0.84,0.81

Feucherolles
et al.[9]

C. coli Ciprofloxacin, RF, LR,
Naive Bayes

0.87

Tetracycline RF, LR,
Naive Bayes

0.83

C. jejuni Ciprofloxacin RF, LR,
Naive Bayes

0.88

Tetracycline RF, LR,
Naive Bayes

0.8

Weis et al.[40] E. coli Ciprofloxacin GP-PIKE,
LR

AUPRC 0.67±0.03,
0.72±0.03

Ceftriaxone GP-PIKE,
LR

0.64±0.05 ,
0.72±0.04

K. pneumo-
niae

Ciprofloxacin GP-PIKE,
LR

0.48±0.15,
0.55±0.11

Ceftriaxone GP-PIKE,
LR

0.64±0.08,
0.77±0.07

S. aureus Ciprofloxacin GP-PIKE,
LR

0.34±0.03,
0.40±0.10

Table 3.1: Overview of the mentioned publications of traditional machine learning methods and corre-
sponding classifier performances.
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3.2 Neural Networks

3.2 Neural Networks

Another essential and frequently used tool in medical research is artificial neural networks[45]:
Artificial neural networks (ANN) simulate the sensory processing of the human brain. ANNs
consist of a number of interconnected model neurons, also known as perceptrons. Each neuron
weighs and then adds up the inputs it receives from other units or external sources. Similar to real
neurons, if the action potential, in ANNs, the calculated sum, rises above a certain threshold, the
neuron is activated, and consequently, potential, in our case data, is transmitted. Therefore, the
classifier’s model neurons output becomes 1 instead of 0 when the threshold is met; a simplified
corresponding function can be found in Figure 3.1.[16]

f(x; θ) = H(βTx+ b) (3.1)

The equation 3.1, which is reproduced from Weis [42] defines the perceptron’s be-
haviour. f calculates the neuron’s output using input feature vector x and the model
parameters θ = (β, b), namely weights and bias. The sum over all inputs xi, weighted
by their corresponding weights βi is calculated. The bias b is added, and the chosen lin-
ear threshold activation function is applied.As H ∈ {0, 1}, H discretises the neuron’s
output, values subceeding the threshold become 0, and those reaching the threshold be-
come 1. [16, 42]

The ANN is trained and, therefore, learns to solve tasks; this process involves adjusting parame-
ters such as weights and biases to minimise the dissimilarity between the predicted output and the
actual true output; this is realised by backpropagation; After the input has been passed through
the network in a feed-forward manner, the discrepancy of the calculated result at the output layer
and the true result is assessed using a loss function. Moving backwards through the network, the
derivatives of the loss function are calculated with respect to each weight, which is done in only
one pass using the chain rule. The derivative is then used to update the weights in a way that
minimises the error.[43]

Basic neural networks consist of an input layer, a hidden layer and an output layer; in the
case that more hidden layers are added, the network is considered a deep artificial neural network
(DNN).[6]

Convolutional neural networks are one of the most popularly applied versions of ANNs. Ac-
cordingly, CNNs are made up of neurons with learnable weights and biases. However, each neu-
ron is merely connected to a subset of neurons from the previous and following layers. Due to
the sparsity and weight sharing created during convolution, training is made efficient. The main
layers within such a network are the convolutional layer, the pooling layer and the fully connected
layer. [2] Convolution is used for feature extraction by sliding a filter across different areas of the
data. For each position, a dot product calculates one value of the output feature map; the filter is
moved by one step-size each, this is defined by the stride.[19]

Weis et al.[38], as well as others, test deep learning approaches compared to more restricted
methods: They compare LR, LightGBM, MLP and find that LightGBM and MLP are the best-
performing classifiers in terms of AUROC (AUROC>0.7) for their species-drug combinations.
They also present a multimodal learning approach over proteomic and chemical features, for
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3 Related Work

paper bacterium antibiotic classifier metric performance

Weis et al.[33] E. coli Cefepime ResMLP/
LightGBM

AUROC 0.87/ 0.71

S. aureus Oxacillin ResMLP/
LightGBM

0.94/ 0.78

Fu et al.[11] P. aeruginosa Tobramycin/
Cefepime/
Meropenem

DNN AUROC 0.77/ 0.85/
0.9

Wang et
al.[36]

Enterococcus
faecium

Vancomycin CNN AUROC 0.887

Table 3.2: Overview of mentioned publications of neural network methods and corresponding classifier
performances.

which they implement a siamese neural network and an MLP with residual skip-connections.[33]
They observe that the multimodal ResMLP methods outperform the conventional MLP as well
as the siamese neural network, as it demonstrates greater consistency across drugs.

Additionally, Fu et al.[11] design a deep neural network synergised with a strategic sampling
approach which outperforms more conventional classifiers in AMR prediction of P. aeruginosa
(AUROC: 0.77-0.9). Similarly, the CNN classifier in the publication “Efficiently predicting van-
comycin resistance of Enterococcus faecium from MALDI-TOF MS spectra using a deep learning-
based approach”[36] successfully predicts vancomycin-resistant Enterococcus faecium (AUROC:
0.887). It is important to note that AUROC values are not comparable across different datasets
with variable data distributions.[4]
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4 Methods

4.1 Data Preparation

In previous work by Caroline Weis et al.[38, 40], the focus is set on more basic and traditional ma-
chine learning algorithms. Therefore, the classifiers, as well as the data retrieval, were implemented
using Scikit-learn.

However, we want to improve generalisation by implementing more sophisticated ML ap-
proaches; this is why we choose to use PyTorch libraries for the implementational add-ons we
provide. PyTorch is a tensor library which is optimised for high-performance tasks such as deep
learning on GPU and CPU [21]. PyTorch is suitable for our task, as we work with large amounts
of data, necessitating the implementation to be fast and efficient. We also want to analyse and
customise the classifiers, which can be done smoothly using PyTorch. Consequently, we retrieve
the data utilising the base implementation using Scikit-learn libraries and then transform it into a
format useful for PyTorch in the following way.

4.1.1 Splitting

We ensure that samples of a specific patient case cannot be separated into train and test split. They
need to remain on one side of the split as sample measurements of the same infection may be very
similar and, therefore, could lead to information leakage from training to testing. Furthermore,
we randomly split the data along a train-test ratio of 80, meaning that the training dataset com-
prises 80%, and the test dataset is 20% of the whole dataset. We make the randomness in splitting
reproducible by introducing ten different random seeds. In order to decrease the data imbalance
or to prohibit unrepresentative splits, we apply a stratification along class and species, which guar-
antees similar prevalence values. We follow the same procedure, regardless of whether train- and
test-domains differ.[38]

4.1.2 PyTorch Tensors

To efficiently store and load the spectral data, this includes spectra and their corresponding labels,
we use PyTorch’s tensor data format. In mathematics, a tensor generalises the concept of scalars,
vectors and matrices to higher dimensions.[21, 29] Analogously, tensors used in data science are
multi-dimensional matrices or arrays containing elements of the same data type.

We utilise PyTorch tensors to store our spectral data by creating a tensor of tensors, each tensor
representing one spectrum. In the work we extend, the pre-existing retrieved data is represented
in the form of Numpy arrays of type float and length 6,000, as we use the bin size 6,000. We
create the PyTorch tensors by transforming the corresponding Numpy arrays using the method
torch.tensor(), this copies the data from the array and initialises the tensor with the copied data.
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Our further calculations necessitate tensors of the type float; we, therefore, use Tensor.to(), which
converts a tensor’s data type to another data type, in this case, 32-bit floats. Accordingly, our labels
are stored within a tensor of 64-bit unsigned integers.

X_train = torch.tensor(X_train).to(torch.float32)

X_test = torch.tensor(X_test).float()

y_train = torch.tensor(y_train)

y_train = y_train.to(torch.int64)

Furthermore, when a GPU is available, we can efficiently transfer our data from the CPU to the
given GPU and vice versa also using Tensor.to().

#transferral of tensors to GPU if GPU is available

if torch.cuda.is_available():

data.to("cuda")

#transferral of tensors to CPU

data.to("cpu")

4.1.3 Spectral Dataset andDataloaders

The feature and label tensors are then combined into a SpectralDataset, which is a custom imple-
mentation of the torch.utils.data.Dataset class and stores the spectrum-label pairs[28]. This allows
us to index data pairs and get the number of 0 and 1 labels within the dataset.

First spectrum-label pairs in train- and test-dataset

(tensor([ 0.2686, -0.0031, -0.8370, ..., -1.1238, -1.1623, -1.1571]), tensor(0))

(tensor([-0.8388, -0.7172, -0.8135, ..., -0.4992, -0.2588, -0.8266]), tensor(0))

Figure 4.1: This terminal output shows how two exemplary spectrum-label pairs are stored in our imple-
mentation.

The torch.utils.Dataset class is commonly used together with the torch.utils.data.Dataloader class,
which wraps an iterable around the dataset [28]. This allows for parallelisation of the data load-
ing process due to automatic batching, resulting in a reduction of needed memory and higher
speed[25]. We create dataloaders for the training set, the validation set and the testing set, with a
default batch size of 32.

A batch size of 32 is the default value in the Keras deep learning API and provides computa-
tional efficiency as well as good performance across many datasets, therefore we deem this a good
fit as a starting point[8].
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4.1 Data Preparation

trainDataset = SpectralDataset(X_train, y_train)

trainloader = torch.utils.data.DataLoader(trainDataset, batch_size=bs, shuffle=False)

testDataset = SpectralDataset(X_test, y_test)

testloader = torch.utils.data.DataLoader(testDataset, batch_size=bs, shuffle=False)

print("labels DRIAMS-A train-dataset, seed: 344")

trainDataset.label_dist(trainloader)

print("labels DRIAMS-A test-dataset, seed: 344")

testDataset.label_dist(testloader)

labels train-dataset:DRIAMS-A , seed: 344

# 0-labels: 3096

# 1-labels: 358

labels test-dataset: DRIAMS-A, seed: 344

# 0-labels: 765

# 1-labels: 83

Figure 4.2: This code snippet shows the creation of datasets and dataloaders for the training and testing sce-
nario, further it shows how to calculate the number of resistant and susceptible samples within
a dataset, as well as the corresponding output.
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4.2 Models

The goal of this work is to contribute toward increasing the performance results of the DRIAMS
dataset, especially in terms of generalisation performance. Limiting factors are the imbalance in
the dataset and the relatively small number of samples per species-antibiotic combination[30]. To
overcome these challenges, we set the final goal of exploring the potential of transfer learning on
the DRIAMS dataset. We do this by establishing the performance of relevant CNN models to
create a suitable pre-trained model whose information shall be transferred into a new task. We
choose to concentrate on CNNs because of their great ability in image classification. In addition,
CNNs are commonly used in transfer learning models[30] and to our knowledge, have not yet
been explored in experiments within the scope of the DRIAMS dataset.

4.2.1 MLP Classifier

To establish the baseline performance for our models, we recreate the MLP classifier mentioned
in "Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using ma-
chine learning" [38]. Multi-layer perceptrons (MLP) are simple neural network classifiers, con-
sisting of multiple stacked perceptrons. In the following we will refer to their implementation as
maldi_amr. We implement our models using PyTorch libraries, wheras the maldi_amr imple-
mentation uses Scikit-learn libraries. This necessitates that we are able to achieve similar perfor-
mance when using the same model architecture in PyTorch. Therefore We initialize the PyTorch
MLP with the default parameters of Scikit-learn MLPs:

def __init__(self, input_size=6000, hidden_layer_sizes=(256,64), output_size=1, activation=’relu’, alpha=

0.0001, learning_rate_init=0.001, max_iter=500,

shuffle=True, random_state=None, scaler = None):

Furthermore we implement gridsearch functionality, to replace the Scikit-learn GridsearchCV
object used in maldi_amr. We use the parameter grid as shown in Table 4.1:

optimized metric epochs learning rate weight decay hidden layers

validation AUROC 100 0.001 0.0001 (256,64),(256,128)

(512,128,64),(512, 256, 128)

Table 4.1: The range of parameters used for parameter search and optimisation of the PyTorch MLP clas-
sifier.
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4.2 Models

We implement early stopping with a patience value of 10 and a tolerance of 1e-4, hence if the
training loss decreases by less than 1e-4 for 10 epochs in a row, then training is stopped early on,
meaning before all epochs were iterated over. In order to explore the performance of CNN net-
works on the DRIAMS dataset, we select the most prominently used convolutional neural net-
works (CNN). The networks are ordered by date of publication ascendingly.

4.2.2 LeNet5

The LeNet5 deep learning architecture was designed by Yann LeCun et al. in 1998 and can be
considered a standard template for other convolutional networks following this publication. Its
popularity stems from the simple and straightforward architecture as well as its usefulness in im-
age classification due to the multilayer convolutional neural network architecture.[10] Namely,
LeNet5 comprises two convolutional layers, followed by three fully connected layers. Each con-
volutional layer contains a rectified linear unit (ReLU) and pooling mechanisms.

4.2.3 AlexNet

The AlexNet (2012) architecture comprises five convolutional layers and three fully-connected
layers. The first two and the last convolutional layers are followed by a max-pooling layer; dropout
is used in the fully connected layers as a means to reduce overfitting. Nonlinearities are introduced
in the form of rectified linear units to increase training speed. Pooling layers consist of multiple
pooling units assembled with a distance of s pixels; each pooling unit covers a space of z ∗ z. For
CNNs s = z is commonly used, but in the AlexNet architecture it holds that s < z(s = 2, z =
3), resulting in overlapping pooling layers.[15]

4.2.4 VggNet

VggNet (2014) is a very deep neural network which commonly facilitates good performance and
generalisation using simple pipelines through depth. Depending on the architecture, either 13
or 16 convolutional layers are followed by three fully connected layers. Non-linearities are im-
plemented into every hidden layer, batch normalisation is incorporated into every convolutional
layer, and dropout is added to the first two fully connected layers.[31]

4.2.5 DenseNet

The core idea of the DenseNet (2018) architecture is shorter connections between layers close
to the input- and those close to the output layer, to make training deeper, more accurate, and
more efficient. DenseNet is a dense convolutional network, meaning that each layer is directly
connected to every other layer with matching feature map sizes in a feed-forward fashion. A pivotal
difference to standard neural networks is that in a network of L convolutional blocks, each layer
l receives the feature maps of all preceding convolutional blocks 0− (l − 1), layer l adds its’ own
feature maps and passes them to the subsequent layers (l+ 1)−L resulting in (L ∗ (L+ 1))/2
feature maps.[12]
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Model
Layers

Unique Feature Year
Conv FC

LeNet5 2 3 pioneer model 1998

AlexNet 5 3 overlapping pooling layers 2012

DenseNet 99 1 block structure, direct connections 2018

VGGNet16 13 3 very deep neural network 2014

VGGNet19 16 3 very deep neural network 2014

Table 4.2: This is an overview of the model architectures we implemented and use in the scope of this thesis.
It displays the name, the number of convolutional layers (Conv), the number of fully connected
layers (FC), a unique feature of the model architecture and the year the specific architecture was
published.

4.3 Evaluation

We assess model performance based on the following metrics: Area Under the Receiver Operating
Characteristic Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC), and accu-
racy. For a deeper understanding, we also introduce the metrics true positive rate, false positive
rate, precision and recall. Receiver operating characteristic (ROC) graphs plot the classifier’s true

TPR =
TP

P
Recall =

TP

P

FPR =
FP

N
Precision =

TP

TP + FP

Figure 4.3: Performance metrics for binary classification, with TP denoting the number of true positives,
FP denoting the number of false positives,P denoting the actual number of total positives,N
denoting the actual number of total negatives in the binary classification task. Therefore TPR
defines the true positive rate which is the portion of positives which were correctly predicted as
positive. FPR defines the false positive rate, which is the portion of negatives that were falsely
predicted as positive.

positive rate (y-axis) against the classifier’s false positive rate (x-axis). Classifiers assign a discrete
value between 0 and 1, by introducing a decision threshold, by default 0.5, which classifies the
indiscrete prediction values between 0 and 1. The ROC curve is built by shifting the threshold
value from−∞ to∞ and plotting the corresponding results. The used metric, the area under the
receiver operating characteristic (AUROC), is the integral of the ROC curve and can, therefore,
be interpreted as the probability of successfully classifying a pair of samples from both classes.[38]
[42] Similarly, precision-recall curves plot the classifier’s precision scores (y–axis) against the clas-
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4.4 Weights and Biases

AUROC =

n−1∑
i=1

(FPRi+1 − FPRi)× (TPRi + TPRi+1)

2

Figure 4.4: FPRi and TPRi denote the false positive and true positive rate at the i-th threshold.

sifier’s recall scores (x–axis) for varying threshold values between −∞ and ∞. The area under
the precision-recall curve can be understood as the classifier’s ability to correctly classify samples
from the minority class whilst also minimizing false discoveries.[38] [42] The accuracy score is

AUPRC =

n−1∑
i=1

(Ri+1 −Ri)×
Pi + Pi+1

2

Figure 4.5: Ri and Pi denote the Recall and Precision at the i-th threshold.

the division of the number of correctly classified samples by the total number of samples. To

Accuracy =
TP + TN

P +N

Figure 4.6: As mentioned above, TP and TN are the number of true positives and negatives respectively.
P and N are the total number of actual positives and negatives.

contextualise these values, an AUROC score of 1.0 is perfect, whereas a score of 0.5 equals the
classification ability of a random classifier. An AUPRC score of 1.0 is perfect, whereas a random
classifier will achieve the class ratio of the minority class.

4.4 Weights and Biases

We employ Weights & Biases for experiment logging and result visualisation. This tool enables us
to track training loss, validation loss, AUPRC, AUROC, f1- and recall- score of every epoch, al-
lowing an in-depth analysis of model performance. We predominantly use W&B sweeps to explore
the potential of model performance through automatic hyperparameter search within a particular
grid 4.3.

We perform five runs per sweep, meaning we run every scenario five times. After establishing a
detailed overview of the models’ generalisation performance, we identify the enormous amount
of parameters as a possible drawback. Therefore, we conduct an ablation study to further inspect
the models’ behaviour.
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optimized metric batch size epochs learning rate weight decay

validation AUROC 32 5, 10, 15, ... ,45, 50 0.01− 0.000001 0.01− 0.000001

Table 4.3: The range of parameters used in W&B parameter search and optimisation.

4.5 Ablation study

Ablation studies are used to analyse the performance of a machine learning system and the impact
of its components by removing specific components from the system. This idea is derived from
neuroscientific ablation studies, in which parts of the brain are damaged or removed in order to
understand the brain regions’ influence on the brain’s ability to perform certain tasks.[20]

Time constraints limit our ablation study to LeNet, AlexNet model architectures. We ablate
AlexNet and LeNet by eliminating one layer, either convolutional or fully connected, at a time.
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5 Experiments

5.1 Experimental Setup

We perform the baseline experiments on a system with two Intel(R) Xeon(R) CPU E5-2687W
v3 @ 3.10GHz processors, each with ten cores and two threads per core, resulting in a total of 40
logical CPUs. However, the amount of data (144.84 GB 2.3) and the depth of the initial models
drastically restrict the speed of model training on this suboptimal setup. Due to our time con-
straints, we decided to switch to an NVIDIA Tesla V100 GPU, which is available through Google
Colab’s allocation of resources. Tesla V100 features 640 Tensor Cores and 5,120 CUDA cores,
and the system provides 51GB System RAM and 16GB GPU RAM. This significantly upgrades
our system’s computational power and efficiency, especially for deep learning tasks.

As this thesis has the objective of extending the work displayed in "Direct antimicrobial resis-
tance prediction from clinical MALDI-TOF mass spectra using machine learning" [38], with a
focus on generalisation, we perform our experiments according to their site-specific training
and testing on sites DRIAMS-A through DRIAMS-D: We pair every train dataset Dtrain in
DRIAMS-A—D with every test dataset Dtest in DRIAMS-A—D; therefore, we create 16 Tu-
ples (Dtrain, Dtest), our 16 train-test scenarios S. For every scenario si ∈ S we train, test and
evaluate a specific model using the same ten different shuffled stratified train–test splitsT .[38] For
every split ti ∈ T in every scenario si, we run a grid search with 5-fold cross-validation to retrieve
the most valuable hyperparameters in terms of AUROC scores. In some cases, the training set
cannot be divided into 5-folds; we then switch to 3-fold cross-validation.

Before training, we prepare our data akin to the description in section 4.1. We apply the widely
known evaluation metrics AUROC, AUPRC and Accuracy to each experiment.

5.2 Baseline Experiment

We evaluate the Pytorch MLP classifier for all mentioned train-test scenarios. This experiment
sets the baseline performance, which we use to interpret and analyse the results from experiments
on other classifiers.

The comparison of the two MLP classifiers’ results for the species Klebsiella Pneumoniae, de-
picted in 5.1, shows that we achieve very similar scores, the AUROC performance deviates by a
value of ±0.02 in most cases. However, the AUROC performance exhibits larger performance
deviations in two scenarios: the scenarios DRIAMS-B—DRIAMS-B and DRIAMS-C—DRIAMS-
C deviate by −0.05, −0.09, respectively. We attribute the causes for this deviation to minor dif-
ferences between the implementations of the two frameworks (e.g.: numerical precision, optimi-
sation) as well as differences in our implementation of the grid search functionality compared to
that of scikit-learn.
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K-CEF: scikit-learn

(a)

K-CEF: PyTorch

(b)

Figure 5.1: Mean AUROC performance of the same 10 random train-test splits for Klebsiella
Pneumoniae (K) and Ceftriaxone (CEF) implemented using scikit-learn (left) and PyTorch
(right) libraries. The mean performance for all train-test scenarios for the scikit-learn and
PyTorch classifier reaches 0.584 and 0.581, respectively.

E-CEF: scikit-learn

(a)

E-CEF: PyTorch

(b)

Figure 5.2: Mean AUROC performance of the same 10 random train-test splits for Escherichia Coli (E)
and Ceftriaxone (CEF) implemented using scikit-learn (left) and PyTorch (right) libraries.
The mean performance for all train-test scenarios for the scikit-learn and PyTorch classifier
reaches 0.666 and 0.666, respectively.
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5.2 Baseline Experiment

K-CEF: scikit-learn & PyTorch

(a)

E-CEF: scikit-learn & PyTorch

(b)

Figure 5.3: Mean AUROC performance of the same 10 random train-test splits for Klebsiella
Pneumoniae (K) (left) and Escherichia coli (E) (right) in combination with Ceftriaxone (CEF)
using results from both implementations, scikit-learn and PyTorch libraries. The mean
performance for all train-test scenarios for K-CEF and E-CEF reaches 0.5825 and 0.666,
respectively. This performance matrix exhibits the mean performance of the
implementation-specific performance matrices.
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The same is true for the results in 5.2, which show the baseline experiment for the species Es-
cherichia Coli. The only noticeable deviation occurs in the DRIAMS-B—DRIAMS-B scenario,
here the PyTorch implementation reaches an AUROC score of 0.72 instead of 0.77 (scikit-learn),
therefore deviating by 0.05.

Both classifiers perform significantly worse on data of the bacterium Klebsiella pneumoniae
compared to data of Escherichia coli. More precisely, both classifiers only reach a mean AUROC
performance over all train-test scenarios of 0.58 for K-CEF, which is 0.08 less than for E-CEF for
which both classifiers achieve a mean AUROC of 0.66. A reason for this could be that the total
amount of samples for K-CEF (2,860 samples) is significantly smaller than the total amount of
samples for E-CEF (4,961 samples) 2.1.

The MLP model architecture is able to generalise the best when the model is trained on the
DRIAMS-A dataset for both implementations and both species. Furthermore, both implemen-
tations achieve the best predictive scores for K-CEF for the train-test scenario DRIAMS-A–A,
achieving 0.74 in terms of AUROC. This suggests that the model either merely learns the noise
in the training dataset or that the site-specific datasets differ too extremely, as the classifier is inca-
pable of yielding similar performance values for scenarios in which the training and testing sites
are different.

However, this is not the case for predictions on the combination E-CEF. Here, the best predic-
tive performance is achieved in the scenario DRIAMS-B–B using the scikit-learn implementation,
achieving an AUROC of 0.77. For the PyTorch implementation per contra, the best AUROC
scores can be observed in scenarios DRIAMS-A–B and DRIAMS-C–C, having a value of 0.75.
Interestingly, a multitude of scenarios exhibit similar performances using the E-CEF data, espe-
cially scenarios tested on DRIAMS-B or DRIAMS-D, which consistently yield AUROC scores
above 0.6. Again, we attribute this to the availability of more data.

5.3 Neural Networks onDatasets fromMultiple Domains

5.3.1 Model exploration

We explore the potential performance increase, compared to the baseline, of the specific model
architectures through hyperparameter optimisation. We use W&B to optimise the hyperparam-
eters for the scenarios we find relevant. In this context, we term scenarios relevant, in which the
MLP classifier is not able to generalise and predict more accurately than a random guess (AU-
ROC = 0.5) for K-CEF. We also consider scenarios, for which the performance of the classifier
is only slightly better than 0.5. Therefore our experiments include scenarios: DRIAMS-A–B,
DRIAMS-B–[A,C,D], DRIAMS-C–[A, B, D], DRIAMS-D–[C,B]. W&B enables us to visu-
alise this experiments in Figures 5.4, 5.5, 5.6, 5.7. These parallel coordinate plots show the results
for every model architecture for this experiment for both species Klebsiella pneumoniae and Es-
cherichia coli; we run one so-called sweep for every scenario, which comprises five runs. During
one sweep, W&B performs the hyperparameter optimisation from run to run. One line in the
plot represents one W&B run, the selected parameters and the model’s performance in terms of
AUROC and AUPRC.

We use the range of prediction scores to assess the performance of classifiers MLP, AlexNet,
LeNet5, DenseNet and VGGNet. Accordingly, we find that none of the models achieves better
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performance than the MLP classifier. We notice that most W&B runs using all classifiers accumu-
late at AUROC scores in the range of [0.3; 0.7], disregarding the few outliers.

The very deep VGGNet architecture and the DenseNet perform slightly worse than the other
classifiers with a range of [0.32; 0.62] and [0.25; 0.7]. The MLP classifier achieves scores within
[0.31; 0.77]. The LeNet5 classifier reaches an interval of [0.33; 0.80]. Similarly, the AlexNet
reaches slightly better scores with a range of [0.38; 0.81].

In the parallel coordinate plot for the MLP classifier 5.4, it is noticeable that significant differ-
ences in the AUROC score occur depending on the specific train-test scenario. The runs within
one scenario achieve very similar results. Therefore, the achieved AUROC score ranges for a sweep
do not overlap as much as, for example, in the AlexNet 5.5 or LeNet5 plot 5.6.

The same effect, only less blatantly, can be observed in the parallel coordinate plot for the
DenseNet classifier 5.8. This implies that the model is incapable of performing similarly for vari-
ous scenarios, meaning it does not generalise well.

As the scales for the plots are adapted to the achieved scores, one can see that the AlexNet 5.5
and LeNet5 5.6 classifier perform within the same range. The colour of the lines within both plots
is predominantly purple, showing that mostly values between 0.3 and 0.6 are achieved. How-
ever, the AlexNet performs above-average for scenarios with the test-site DRIAMS-B, whereas
the LeNet5 classifier achieves comparably higher AUROC scores on the train-site DRIAMS-C.

Furthermore, the AUROC values of the VGGNet experiment accumulate independently from
the train-test scenario, we observe predominantly orange lines in the parallel coordinate plot 5.7.
However, the AUROC scores are very much below-average compared to the other classifiers, the
scale begins at 0.15 and only reaches 0.65.

We further analyse and detail model behaviour beneath the corresponding parallel coordinate
plots. The corresponding W&B report can be found here, additionally, we have attached the cor-
responding loss plots to the Appendix 6.

25

https://wandb.ai/katharina-hagedorn/Vgg16-sweep/reports/comparison-of-nets-based-on-exp1---Vmlldzo3MTIwMzgz


5 Experiments

Figure 5.4: This parallel coordinate plot shows the results of the model exploration of the MLP classifier.
The logged values of the runs for which parameter search and optimisation was carried out by
W&B: Batch size, number of epochs, learning rate (lr), weight decay (wd), train dataset (train-
site), test dataset (testsite), AUPRC (val_auprc), AUROC (val_roc_auc). The MLP architec-
ture performs the best in the scenario DRIAMS-C–B with AUROC values between 0.71 and
0.77. It also yields good performances for DRIAMS-C–D, showing that the model can gen-
eralise well when trained on the domain DRIAMS-C to two other sites, namely DRIAMS-
B and DRIAMS-D. The opposite scenario, DRIAMS-D–C, achieves very similar results to
DRIAMS-C–D; however, the model is not able to generalise from DRIAMS-B to DRIAMS-
C, as it achieves AUROC scores slightly below 0.5. No clear trend is noticeable for the hy-
perparameters for well performing runs, learning rates range from 0.0002 to 0.0008 and the
weight decay settles between 0.0002 and 0.0009, which is a big range. In general, the MLP
model yields consistent performances for each scenario, meaning that the AUROC perfor-
mances within one scenario deviate by less than 0.1 in most cases, albeit the hyperparameters
being changed significantly. However, the performance gap between the scenarios DRIAMS-
C–B and DRIAMS-C–A or DRIAMS-B–A adds up to 0.3. This significant dissimilarity can
be attributed to overfitting, as shown in figure 5; the model learns the noise in the training data
instead of underlying patterns, and therefore, high AUROC values occur due to similarities in
the validation and training dataset.
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Figure 5.5: This parallel coordinate plot shows the results of the model exploration of the AlexNet clas-
sifier. The logged values of the runs for which parameter search and optimisation was carried
out by W&B: Batch size, number of epochs, learning rate (lr), weight decay (wd), train dataset
(trainsite), test dataset (testsite), AUPRC (val_auprc), AUROC (val_roc_auc). The best per-
formance is achieved for the scenario DRIAMS-D–B and the species Escherichia coli with an
AUROC score of 0.81. Interestingly, the worst performance is also achieved for the scenario
DRIAMS-D–B but with the species Klebsiella pneumoniae with an AUROC score of 0.2685.
This vast gap can be attributed to less data for the latter species, nevertheless performance dif-
ferences of more than 0.2 in terms of AUROC can be observed in most sweeps, meaning in
the cases where only the hyperparameters are varied, not the species. Consequently, the model
is very sensitive to hyperparameters, which is common for deep neural networks, especially to
weight decay and epochs, as shown in the W&B report. The classifier outcomes benefit from
mid-range weight decay as well as learning rates, meaning between 0.0004 and 0.0007. Aside
from the performance fluctuations, the model reaches good AUROC scores using DRIAMS-B
as the validation dataset and any other dataset as the training dataset. The AlexNet cannot yield
increases in generalisation performance in the other cases; one cause is that the validation loss
remains very unstable, as shown in figure 7.
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Figure 5.6: This parallel coordinate plot shows the results of the model exploration of the LeNet5 classi-
fier. The logged values of the runs for which parameter search and optimisation was carried
out by W&B: Batch size, number of epochs, learning rate (lr), weight decay (wd), train dataset
(trainsite), test dataset (testsite), AUPRC (val_auprc), AUROC (val_roc_auc). The best per-
formance in terms of AUROC is achieved for scenario DRIAMS-C–B with 0.8. Comparably
high AUROC scores are also achieved in the scenario DRIAMS-C–D (0.68) and the scenario
DRIAMS-C–A outperforms other scenarios tested on DRIAMS-A. The scenario DRIAMS-
A–B achieves the lowest AUROC scores between 0.3 and 0.35. It is noticeable that very high
or low learning rates lead to performance decreases, per contra a low weight decay value, be-
tween 0.0 and 0.002, is favourable for the architecture. However, the model remains stable in
AUROC scores within one scenario and we cannot make out one specific optimal hyperpa-
rameter set, as the model yields good performances for most parameter sets. Additionally, very
low weight decay values can lead to overfitting, which remains a problem across all scenarios,
as depicted in 6. In general, this plot and the loss curves suggest that the model is incapable
of generalising from one domain to another as it does not learn the resistance mechanisms but
overfits to the noise in the data.
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Figure 5.7: This parallel coordinate plot shows the results of the model exploration of the VGGNet clas-
sifier. The logged values of the runs for which parameter search and optimisation was carried
out by W&B: Batch size, number of epochs, learning rate (lr), weight decay (wd), train dataset
(trainsite), test dataset (testsite), AUPRC (val_auprc), AUROC (val_roc_auc). The best per-
formances are reached in the scenarios DRIAMS-C–B and DRIAMS-D–C with AUROC
scores of 0.62. The worst performing scenario, DRIAMS-A–B, reaches an AUROC score of
0.17, which is very low. Bigger learning rates, between 0.004 and 0.009, associate with better
performances. The same is true for weight decay values between 0.0001 and 0.0004, suggesting
that small regularisation is necessary. The model exhibits certain instability especially within the
scenarios DRIAMS-D–C and DRIAMS-C–D, the AUROC scores differ by up to 0.2. This
parameter sensitivity is typical for deep neural networks, however W&B is incapable of finding
optimal parameters for our task. The model’s generalisation performance is weak, as it performs
worse than or similar to a random guess (AUROC ≤ 0.5) in most cases.
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Figure 5.8: This parallel coordinate plot shows the results of the model exploration of the DenseNet clas-
sifier. The logged values of the runs for which parameter search and optimisation was carried
out by W&B: Batch size, number of epochs, learning rate (lr), weight decay (wd), train dataset
(trainsite), test dataset (testsite), AUPRC (val_auprc), AUROC (val_roc_auc). For this clas-
sifier, we leave out the scenario DRIAMS-A–B as the runtime surpasses 15 hours for one run
within a sweep for a batch size of 200; a batch size of 32 would calculate even longer. The run-
time is too long for the application in AMR prediction and the classifier is, therefore, negligible.
The best performance is reached for the scenario DRIAMS-C–B with Escherichia coli and an
AUROC score of 0.85. This is very high compared to other models. However, this run is an
exception, as the runs from other scenarios accumulate between 0.7 and 0.4. The worst per-
formance is also achieved in DRIAMS-C–B, but with Klebsiella pneumoniae with a score of
0.25. This highlights the strong dependency of the prediction outcome on the dataset. Clear
trends in hyperparameters cannot be observed, nevertheless mid-range or higher learning rates
and mid-range or lower weight decay values are oftentimes associated with higher AUROC
scores. A small weight decay value helps the model learn complex patterns, but this does not
succeed, as the AUROC values exhibit weak generalisation ability.

30



5.3 Neural Networks on Datasets from Multiple Domains

5.3.2 Baseline experiments: LeNet5, AlexNet

We conduct the described baseline experiment for all the classifiers mentioned in our Methods
part 4.2. However, we were not able to generate extensive validation results for the Vgg16, Vgg19
and DenseNet classifiers, as the computational complexity of this task overwhelms our computing
power. Hence, we further concentrate on the AlexNet and Lenet5 classifiers.

The LeNet5 classifier reaches a predictive performance similar to that of the MLP classifier
for E-CEF 5.9a. Per contra, the classifier slightly underperforms for K-CEF 5.9b in comparison
to the baseline AUROC values 5.1b. For K-CEF, the LeNet5 classifier and the MLP achieve a
mean AUROC value of 0.56 and 0.58. For E-CEF, they reach mean AUROC values of 0.66
and 0.67, respectively. We also observe very similar mean AUPRC values for both species, more
precisely the LeNet5 classifier achieves mean AUPRC scores 0.188 and 0.312 for K-CEF and E-
CEF respectively, whereas the MLP classifier achieves 0.196 and 0.309. The LeNet5 classifier
generates the best performance when trained on DRIAMS-D and DRIAMS-C and tested on a
deviating site for E-CEF and K-CEF with mean AUROC values of 0.670 and 0.578. The test-
sites DRIAMS-B and DRIAMS-D yield the best classification performances when trained on any
other site. The scenario DRIAMS-D-B for E-CEF reaches the best generalisation performance
for the LeNet5 classifier with an AUROC score of 0.77. However in general, when analysing
the results and the corresponding loss curves, we find that the model overfits for most train-test
scenarios.

The AlexNet classifier cannot quite compete with the baseline or the LeNet5 classifier 5.10: It
achieves mean AUROC values of 0.55 and 0.62 for K-CEF and E-CEF; therefore, it underper-
forms by 0.03 and 0.05 compared to our baseline. Meanwhile, the mean AUPRC values reach
0.18 and 0.28 for K-CEF and E-CEF, deviating by 0.02 in both classifiers in comparison to the
baseline.

The classifier exhibits the best generalisation performance for the train-sites DRIAMS-A and
DRIAMS-C for E-CEF and K-CEF respectively, generating mean AUROC values of 0.65 and
0.58 when tested on the remaining sites. The test-site DRIAMS-D yields the best performances
when trained on deviating sites in both cases, E-CEF and K-CEF. In a more thorough inspec-
tion, the classifier underperforms in scenarios tested on the DRIAMS-A dataset. Additionally, it
only generates AUROC scores greater than 0.7 for scenarios trained and tested on the same site.
Therefore, the AlexNet classifier exhibits a slightly weaker generalisation ability than the baseline.

We observe a performance gap when predicting on spectra of the species Klebsiella pneumo-
nia compared to spectra of the species Escherichia coli, a discrepancy of 0.1 and 0.07 in terms of
AUROC can be found for the Lenet5 and AlexNet classifiers. Similarly, the baseline experiment
for the MLP classifier also yields a performance gap of 0.08 in AUROC scores, showing that the
deep neural networks do not exacerbate the gap. As mentioned above, this phenomenon can be
attributed to a smaller dataset for the Klebsiella pneumonia species.

The baseline performance, as well as the model exploration, do not yield significant or any per-
formance increases in terms of generalisation performance. Additionally, we find that overfitting
remains a problem in most classifiers. To remedy this, we perform an ablation study.
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E-CEF

(a)

K-CEF

(b)

Figure 5.9: Mean AUROC performance of the same 10 random train-test splits using the LeNet5
classifier for combinations Escherichia coli-Ceftriaxone (left) and Klebsiella
pneumoniae-Ceftriaxone (right). The classifier achieves a mean AUROC performance of 0.66
and 0.56 for E-CEF and K-CEF, respectively.

E-CEF

(a)

K-CEF

(b)

Figure 5.10: Mean AUROC performance of the same 10 random train-test splits using the AlexNet
classifier for combinations Escherichia coli-Ceftriaxone (left) and Klebsiella
pneumoniae-Ceftriaxone (right). The classifier achieves a mean AUROC performance of
0.62 and 0.55 for E-CEF and K-CEF, respectively.
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5.4 AblatedNeural Networks onDatasets fromMultiple
Domains

Contrary to our common experimental setup 5.1, we decrease the scope of the ablation exper-
iments due to time constraints. We only use two domains: DRIAMS-A as the training site,
DRIAMS-B as the test site. We choose these two domains, as they resemble real world scenar-
ios more than other given scenarios: DRIAMS-A is a very big dataset, consisting of about 86.16
GB of data, whereas DRIAMS-B is a smaller dataset comprising 3.69 GB data. Furthermore, the
classification performance of the MLP in maldi_amr lacks in this scenario compared to other
train-test site combinations.

In these experiments we execute training, testing and validation for the same seven different
random train-test splits to decrease performance variation due to the specific split. However, we
do not apply cross-validation nor early stopping however, we do apply z-score normalisation. We
plot the training- and the validation loss and assess model performance using the mean AUROC,
mean AUPRC and mean accuracy of all train-test splits of one classifier architecture.

We find that the initial LeNet5 model architecture with two convolutional and three fully con-
nected layers performs worse than models with fewer layers 5.11. The classifier comprised of two
convolutional layers and one fully connected layer (lenet_012) achieves an AUROC score of 0.72,
outperforming the initial architecture by 0.09. Furthermore, the classifier comprised of one con-
volutional layer and three fully connected layers (lenet_0234) outperforms the initial architecture
by 0.07 in terms of AUPRC values. We analyse the generated loss curves and find that loss curves
of lenet_0234 converge better than those of lenet_012. The learning curves of the different ar-
chitectures mainly indicate underfitting, but for lenet_0234, we can observe loss curves that con-
verge more stably in comparison. Therefore, we choose the best-performing classifier in terms of
AUPRC, lenet_0234.

The ablation study for the AlexNet architecture renders more straightforward results: We find
that the AUPRC values mostly increase with a decreasing number of convolutional layers. Addi-
tionally, the AUROC values increase with an increasing number of fully connected layers. How-
ever, an exception occurs for the architecture consisting of two fully connected layers and three
convolutional layers, having the highest mean AUROC score of 0.67. The validation and training
loss converge in every random train-test seed 5.13, the learning curves of the alex_01256 indicate
that the model is able to generalise to unseen data. Consequently, we choose this model architec-
ture for further validation, alex_01256.
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E-CEF: Ablation LeNet5

Figure 5.11: This figure shows the mean AUROC and AUPRC performance of 6 different model
architectures of the same seven random train-test splits. The x-axis shows the number of
convolutional layers, the y-axis shows the number of fully connected layers within one
architecture. The best AUROC score is achieved by the model architecture with two
convolutional layers and one fully connected layer; the best AUPRC score is achieved by the
model comprising one convolutional layer and three fully connected layers.

E-CEF: Ablation AlexNet

Figure 5.12: This figure shows the AUROC and AUPRC performance of 15 different model
architectures of the same seven random train-test splits. The x-axis shows the number of
convolutional layers, the y-axis shows the number of fully connected layers within one
architecture. The best AUROC score is achieved by the model architecture with three
convolutional layers and two fully connected layers; the best AUPRC score is achieved by the
models comprising one or two convolutional layers and one fully connected layer.
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Figure 5.13: This plot depicts the training and validation loss curves for seven different train-test splits for
the alex_01256 classifier. The training loss is depicted in blue; the validation loss is marked in
orange. As opposed to other model architectures, the classifier achieves very similar loss curves
across the seven different train-test splits. The training- and validation losses converge in tune
for every split, meaning that the losses decrease at similar epochs and with similar extremes.
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5.4.1 Baseline experiment: modified networks

We conduct the described baseline experiment for the chosen classifiers: lenet_0234 and alex_01256.
We find that the chosen lenet_0234 model does not render performance increases. It yields

mean AUROC performances of 0.55 and 0.63 for K-CEF and E-CEF, underperforming by 0.01
and 0.02 compared to the original LeNet5 model. Furthermore, the ablated model deviates in the
way that the best-performing train-sites are DRIAMS-A for both species as opposed to DRIAMS-
D and DRIAMS-C in the basic LeNet5 architecture. Additionally, the best generalisation perfor-
mance, meaning scenarios with deviating train-test sites, is achieved for E-CEF for the DRIAMS-
D–B scenario with a score of 0.71.

These deviations can occur because we only ablate using the train-test scenario DRIAMS-A–
DRIAMS-B and have to use a smaller grid for our grid search functionality, due to timely and
computational limits. Therefore, we risk that our model architecture will only perform well in
this scenario, but other scenarios will necessitate deeper architectures. However, we find that the
discrepancies in performance are minor, underlining that the chosen architecture does not signifi-
cantly affect the validation results of our models, nor does it affect the generalisation performance.

E-CEF

(a)

K-CEF

(b)

Figure 5.14: Mean AUROC performance of the same 10 random train-test splits using the lenet_0234
classifier for combinations Escherichia coli-Ceftriaxone (left) and Klebsiella
pneumoniae-Ceftriaxone (right). The classifier reaches mean AUROC values of 0.55 and
0.63 for K-CEF and E-CEF, respectively.
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6 Conclusion

We extend prior work on antimicrobial resistance prediction with the goal of increasing classifier
generalisation performance. We do this by training and evaluating three different deep artificial
neural networks. We conduct a multitude of experiments on 16 different train-test scenarios us-
ing the AlexNet and LeNet5 model architectures. We arrive at the conclusion that deep classifiers
and parameter tuning, to our extent, alone are not sufficient for achieving the desired domain
adaptation and consequently do not increase generalisation performance significantly. To fur-
ther examine model behaviour, we introduce an ablation study over the layers of the LeNet5 and
AlexNet model architectures.

In this thesis, we show that deep neural networks, especially CNNs, can compete with other
machine learning methods in the realm of antimicrobial resistance prediction. However, we recog-
nise that we have not found the optimal parameters or network architecture for realising better
generalisation performance compared to other publications.

Thingswetriedbutdidnotwork In the course of this work, we tried various approaches,
which we had to dismiss due to unfavourable results. To contribute to future work, we want to
name methodologies that failed to increase performance in our experiments. As we make clear,
we try various prominent model architectures and optimise model parameters using W&B. How-
ever, we do not observe stark differences in performance, only in computing time. A computing
time of more than five hours for a single training, testing and validation process is why we exclude
the ResNet18, ResNet50, and VggNet19 architectures from this thesis.

As we constantly face the problem of overfitting, we also include dropout and attention mecha-
nisms, especially in the LeNet5 architecture. Nevertheless, the issue of model instability remains,
which is why we also implement the optuna hyperparameter optimisation framework but fail to
generate helpful results. This is because we can only optimise for one train-test scenario, seed and
antibiotic-bacterium combination. Furthermore, we also tune learning rates using the PyTorch
learning rate finder and linear, polynomial and exponential learning rate schedulers. Even so, we
cannot remedy over- or underfitting in most cases.

Final Implications This is where future contributions tie in; there are possibilities galore
to further explore the scope of deep neural networks and the DRIAMS dataset. We have set the
basis for transfer learning using CNNs as the base model; therefore exploring domain adapta-
tion methods such as deep domain confusion (DDC), deep CORAL (Correlation Alignment),
or deep adaptation networks (DAN) would be a logical next step. To acquire the optimal CNN
model, one could extend the given ablation study to validate the results more thoroughly. For
example, including all train-test scenarios (DRIAMS-A–DRIAMS-D), all ten random stratified
train-test-splits, cross-validation, drop-out, regularisation methods and learning rate schedulers.
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6 Conclusion

In analysing previous contributions and our work, we cannot observe significant differences in
the performance of the presented classifiers, even though we use a variety of deep learning archi-
tectures of different sizes.

This leads us to the hypothesis that not only the classifiers need to be optimised but, more im-
portantly, the data. Machine learning models are designed to find patterns or underlying informa-
tion within the data. This task is exceptionally challenging in the application of AMR predictions
because the occurring resistance mechanisms are not fully known to science [22]. Consequently,
we are not aware of which features are crucial within our spectral data. As the data is preprocessed
and binned in a specific way, potentially significant features within the data may be blurred or can-
celled out. Hence, another critical aspect to inspect is the characteristics of the DRIAMS dataset
and the final binned data we feed into our models. These could be the scale and representative-
ness of the data, particularly since grave performance gaps occur for varying train-test data splits.
Lastly, above all, the binning process manipulates the intricacies of the spectra; therefore, exper-
iments for optimising the spectral bin size could fill essential gaps in applying machine learning
methods for AMR predictions.
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Additional Figures

In the scope of this thesis, we focus on the AUROC metric for comparability to prior work. How-
ever, the AUPRC metric is equally important for generalisation tasks. Therefore, we want to
present the classifiers’ AUPRC performances more elaborately.

E-CEF

(a)

K-CEF

(b)

Figure 1: Mean AUPRC performance of the same 10 random train-test splits using the MLP classifier
implemented using PyTorch. The classifier achieves mean AUPRC scores of 0.309 and 0.186
for E-CEF and K-CEF, respectively. The best generalisation performances of 0.31 and 0.54 are
achieved in the scenarios DRIAMS-A–C and DRIAMS-C–B for K-CEF and E-CEF. The
AUPRC performance is increased for test-sites DRIAMS-B and DRIAMS-C for both species.

45



Additional Figures

E-CEF

(a)

K-CEF

(b)

Figure 2: Mean AUPRC performance of the same 10 random train-test splits using the LeNet5 classifier.
The classifier achieves mean AUPRC scores of 0.312 and 0.188 for E-CEF and K-CEF,
respectively. The best generalisation performances of 0.31 and 0.55 are achieved in the scenarios
DRIAMS-A–C and DRIAMS-D–B for K-CEF and E-CEF. The AUPRC performance is
increased for test-sites DRIAMS-B and DRIAMS-C for both species.

E-CEF

(a)

K-CEF

(b)

Figure 3: Mean AUPRC performance of the same 10 random train-test splits using the AlexNet classifier.
The classifier achieves mean AUPRC scores of 0.28 and 0.18 for E-CEF and K-CEF,
respectively. The best generalisation performances of 0.27 and 0.44 are achieved in the scenarios
DRIAMS-D–B and DRIAMS-A–B for K-CEF and E-CEF. The AUPRC performance is
increased for test-sites DRIAMS-B and DRIAMS-C for both species.
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Figure 4: This parallel coordinate plot shows the results of the model exploration of the ResNet18 classifier,
only for the species Klebsiella pneumoniae. The logged values of the runs for which parameter
search and optimisation was carried out by W&B: Batch size, number of epochs, learning rate (lr),
weight decay (wd), train dataset (trainsite), test dataset (testsite), AUPRC (val_auprc), AUROC
(val_roc_auc). We leave this model out from the main scope of the thesis, as the computational
complexity overwhelms our system. The classifier predicts AUROC values in the range of [0.3;
0.7]. The best performance is achieved in scenarios tested on DRIAMS-D or DRIAMS-C. The
whole range of the hyperparameter is used and no clear trends can be observed; however, we find
that mid-range to lower weight decay values are oftentimes associated with better performance.
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Additional Figures

Furthermore, we want to exhibit the loss curves from the report, which we reference in 5.3.1.
The following figures show two plots. The top plot shows the validation loss curves for each run
of each sweep within the model exploration experiment. The bottom plot shows the training loss
curves for the same runs of the same sweeps; the corresponding loss- and validation curves are
plotted using the same colour and pattern. For a better overview, go to the mentioned report to
be able to scroll and select individual runs.
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Figure 5: This figure shows the plots for the validation- (val_loss) and training (train_loss) loss curves for
the PyTorch-MLP classifier. The training loss curves continuously decrease and converge to zero
in most cases, suggesting that the model learns the data well. The validation loss curves do not
converge; the curves either remain stable without change, suggesting underfitting, or increase by
growing epochs and jump between values, suggesting overfitting. However, this indicates that
the model cannot learn the underlying resistance patterns.
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Additional Figures

Figure 6: This figure shows the plots for the validation- (val_loss) and training (train_loss) loss curves for
the LeNet5 classifier. A number of training loss curves converge smoothly. However, many of
them fluctuate between values, which suggests that the model parameters, like the learning rate,
are set inadequately or that the data contains too much noise. The corresponding validation loss
curves show similar behaviour: the curves either remain stable without converging, indicating un-
derfitting, or increase by growing epochs and jump between values, indicating overfitting. Pos-
sible causes could be that the model cannot generalise to the validation data due to inadequate
model complexity or unrepresentative data.
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Figure 7: This figure shows the plots for the validation- (val_loss) and training (train_loss) loss curves for
the AlexNet classifier. The training loss curves consistently converge to the value zero; either very
slowly or with an extreme drop, indicating that the learning rate is either too high or too low.
Conversely, the validation loss curves exhibit extreme jumps between values. The model is highly
inconsistent and cannot generalise to the validation data, which can be caused by overfitting.
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