
Graph Filtration Surfaces

A Deep Multi-Scale Approach to Dynamic Graph Representation

by
Franz Srambical

Bachelor’s Thesis in Informatics

School of Computation, Information and Technology - Informatics
at

Technical University ofMunich

Graph Filtration Surfaces

Filtrationsflächen zur Graphenrepräsentation

Author: Franz Srambical

Supervisor: Prof. Dr. Niki Kilbertus

Advisor: Dr. Bastian Rieck

Submission Date: August 15, 2023

Bachelor’s Thesis in Informatics

School of Computation, Information and Technology - Informatics
at

Technical University ofMunich

I confirm that this bachelor’s thesis is my own work and I have documented all sources and mate-

rial used.

Munich, August 10, 2023 Franz Srambical

Abstract

Most of the existing approaches for classifying dynamic graphs either lift graph kernels to the tem-

poral domain, or use graph neural networks. While the former approach achieves state-of-the-art

accuracies, its scalability is severely limited due to the blow-up during the “lifting” operation and

the computational complexity of graph kernels. The latter approach does not perform as well on

dynamic-graph-level classification tasks, since it is designed for link prediction and node classifi-

cation. In this work, we propose a novel method for dynamic graph classification, which we term

filtration surfaces. We experimentally validate the efficacy of our model and show that filtration

surfaces outperform methods that act on dynamic graphs that are converted to spatiotemporal

variants, and attain comparable accuracies to graph neural networks applied to static graphs ob-

tained by a sophisticated conversion scheme that minimizes the loss of temporal information.

Our method does so while being either completely parameter-free or having at most one param-

eter, and yielding the lowest overall standard deviation. We also describe how filtration surfaces

can be adapted to better model a setting where the input dynamic graph is obtained by sampling

from an underlying “ground truth” dynamic graph and propose an approach for extrapolating

filtration surfaces to unseen, future time points. Lastly, we introduce a second, related, but highly

scalable method which we term filtration trajectories and prove its expressivity upper-bound.

vii

Contents

1 Introduction 1

2 Background 3

2.1 Static Graphs . 3

2.2 Dynamic Graphs . 3

2.2.1 Taxonomy based on Edge Lifetimes 3

2.2.2 Modelling Dynamic Graphs . 3

2.3 Filtrations . 4

3 RelatedWork 5

3.1 Dynamic Graph Neural Networks . 5

3.2 Graph-Shapelet Pattern . 5

3.3 Stable Distance Persistent Homology . 5

3.4 Temporal Graph Kernels . 6

4 Methods 7

4.1 Filtration Curves . 7

4.1.1 Edge Weight Function . 7

4.1.2 Graph Descriptor Function . 9

4.1.3 Properties of Filtration Curves . 9

4.2 Filtration Surfaces . 10

4.2.1 Classification . 10

4.2.2 Filtration Trajectories . 10

5 Experiments 15

5.1 Experimental Setup . 15

5.2 Synthetic Datasets . 15

5.3 Real-World Datasets . 15

6 Conclusion 21

Bibliography 23

Appendices 27

Additional Figures 29

ix

1 Introduction

Recent years have seen a wealth of research on the analysis of graph-structured data [41] [45] [50]

[36]. Graphs are a natural way to represent permutation-invariant data, such as social networks

[29], citation networks [21], or protein-protein interaction networks [11]. While the subfield of

static graph analysis has been studied for decades, the analysis of dynamic graphs is still a relatively

nascent field. In this work, we will focus on the task of dynamic graph classification, where the

goal is to predict the class of a process, which cannot be observed from a single snapshot of the

graph, but only from the evolutionary pattern of the graph over time. Examples for such processes

include the spread of a disease in an interaction network, the evolution of a citation network or

the growth of different types of social communities.

A central challenge in working with dynamic graph data involves learning appropriate represen-

tations of a graph’s evolution over time. Over the years, numerous strategies have been proposed,

including Neural Temporal Walks [12], RNNs [35] and Temporal Point Processes [39]. In this

work, we will explore a different approach based on filtrations, a concept from topological data

analysis typically associated with persistent homology [8]. Specifically, we will be extending prior

work from O’Bray, Rieck, and Borgwardt on filtration curves [23] to a dynamic setting.

The remainder of this thesis is structured as follows: We first provide some background on

graphs and clarify the terminology used in dynamic graph learning literature. We then review

related work on dynamic graph classification and existing approaches. Subsequently, we intro-

duce our proposed method, which we term filtration surfaces. We will experimentally validate the

efficacy of our method and conclude with a discussion of our results and potential future work.

Our code and instructions to reproduce our experiments are available at https://github.com/

emergenz/filtration_surfaces.

1

https://github.com/emergenz/filtration_surfaces
https://github.com/emergenz/filtration_surfaces

2 Background

2.1 Static Graphs

A (static) undirected graph G = (V,E) is a structure consisting of N pairwise different nodes

V = {v1, . . . , vN} and edges E ⊆ {X ∈ P(V) : |X| = 2}. Graphs are called directed
when edges have a directionality associated with them, and undirected otherwise. A labeled graph

additionally possesses a label function lV : V → Σ, where Σ is some alphabet. Edges can also

be labeled via a label function lE : E → Γ. When Σ = Rd
for some d ∈ N, the label of a

node lV (v) is called the (continuous) attribute of v. When Γ = R, lE(e) is called the weight of

the edge e. A graph is called heterogeneous if it has a discrete (node or edge) label function, and

homogeneous otherwise [15].

2.2 Dynamic Graphs

Dynamic graphs can be formulated and represented in many different ways. To bring clarity to

the terminology used in the literature, we will first introduce a distinction based on lifetimes of

edges, which we adapt from [31].

2.2.1 Taxonomy based on Edge Lifetimes

Interaction graphs: An interaction graph is a dynamic graph where edges are instantaneous

events. This type of graph is often represented as a contact sequence [20].

Temporal graphs: Temporal graphs have short-lived (albeit non-instantaneous) edges. Edges

can be thought of as having a duration.

Evolving graphs: In evolving graphs, edges are generally long-lived. It is more natural to think

of the appearance and disappearance of edges in an evolving graph as two separate events.

2.2.2 Modelling Dynamic Graphs

We will now introduce multiple modelling approaches for dynamic graphs.

Spatiotemporal graphs: In spatiotemporal graphs only the node or edge features change, while

the graph topology stays the same. The temporal dimension is encoded in the edge features.

Discrete-time dynamic graphs: Discrete-time dynamic graphs are defined as a finite sequence

of static graphs G = (G1, . . . ,Gn) and represent n snapshots of the dynamic graph in

discrete time intervals which are assumed to be of equal length.

3

2 Background

Continuous-time dynamic graphs: These constitute the most general type of dynamic graph

representation and are usually modelled as a sequence of time-stamped events

G = (x(t1), x(t2), . . .), where x can be a node or an edge operation [28]. Operations can

be inserts, updates or deletions. Another more recent approach is to model a continuous-

time dynamic graph as an adjacency matrix containing posets (partially-ordered sets) of

edge lifetimes [3]. While similar to the aforementioned method, this permits exploitation

of the semi-ring properties of said matrix. We did not explore the latter approach, but deem

it a promising avenue for future work.

2.3 Filtrations

While filtrations are a general topological method, we restrict ourselves to filtrations on graphs

and refer the reader to [8] for a more general introduction.

A filtration FG on a graph G = (V,E) is a sequence of subgraphs (G1, . . . , Gm) such that

∅ ⊆ G1 ⊆ . . . ⊆ Gm = G. A filtration can be obtained by iteratively adding edges to the

starting graph G1. More specifically, a filtration is defined using an edge weight function w :
E → R such that Gi is induced by all edges with weights less than or equal to wi, where wi is

the i
th

smallest weight. This means that creating a filtration is equivalent to sorting the edges by

weight and progressively adding them to the graph in order of increasing weight, yielding a time

complexity of O(n log n) [23].

G1

⊆ 3

3

G2

⊆ 3

3

4

4

G3

⊆ 3

3

4

6

4
6

G4 = Gm

Figure 2.1: Filtration of a graph. Black and white nodes depict nodes with different attributes. Edges are

consecutively added to the graph along the filtration in order of increasing weight.

4

3 RelatedWork

3.1 Dynamic GraphNeural Networks

In recent years, there has been a notable surge in the popularity of methods analysing dynamic

graphs [51] [38] [10]. Among these methods, a significant portion of research efforts has been ded-

icated to dynamic graph neural networks (DyGNNs), which are specifically designed to excel in

link prediction and node classification tasks [31]. Although DyGNNs can handle dynamic graph

classification via global readout functions, their performance on such tasks remains largely unex-

plored in the literature, with only a few isolated exceptions noted [19] [44] [42]. One such excep-

tion, GDGESN [18], works by combining a Dynamical Graph Echo State Network (DynGESN)

[37] with snapshot merging, resulting in accuracies that surpass those of the vanilla DynGESN,

albeit falling short of the performance achieved by temporal graph kernels. Another exception,

STAGIN [14], addresses the issue of the limited expressivity of vanilla readout functions by intro-

ducing spatial-attention-based readout functions. Nevertheless, a big drawback of DyGNNs is

the need for extensive hyperparameter tuning to attain optimal performance.

3.2 Graph-Shapelet Pattern

Wang et al. [43] try to solve the classification problem by first transforming a dynamic graph into

a univariate or multivariate time series, and subsequently extracting time-series shapelets [49].

Shapelets are time series subsequences, which are maximally useful for distinguishing between

classes. Using shapelets instead of entire time series allows for a significantly more efficient, nicely

interpretable and often more robust classification, as noise that stems from subsequences that are

disjoint from the shapelets is ignored. Shapelets are extracted using brute-force shapelet search or

more efficient techniques such as Subsequence Distance Early Abandon or Early Entropy Pruning
[49].

3.3 Stable Distance PersistentHomology

Ye et al. introduced a novel representation for dynamic graphs called Stable Distance Persistent

Homology (SDPH) [48]. This representation is subsequently input to a kernel machine, such

as a support vector machine, to perform classification. The SDPH representation is obtained by

first computing persistence diagrams using a dynamic Dowker filtration of the dynamic graph,

and then vectorizing these diagrams using a method the authors coined Time-interlevel Kernel.

We will not elaborate on the details of this method and refer the curious reader to the original

paper.

5

3 Related Work

3.4 Temporal Graph Kernels

Temporal graph kernels [25] present an entirely different approach to dynamic graph classifica-

tion by lifting standard graph kernels to the temporal domain. While they achieve state-of-the-art

accuracies, it is important to note that (i) the transformation to the static graph can lead to a

blow-up of the size of the graph and (ii) the computational complexity is lower-bounded by that

of standard graph kernels . As a consequence, the use of this method becomes impractical for

larger graphs.

6

4 Methods

Before we introduce our proposed method, we will first provide some background on filtration

curves. This will equip us with the necessary tools to find a natural extension to the dynamic

setting.

4.1 Filtration Curves

Filtration curves [23] are expressive, computationally efficient representations of static graphs.

Unlike methods based on subgraph matching or neighbourhood comparison, filtration curves

take both edge weights as well as the graph topology into account. The fundamental postulate

behind filtration curves is that two graphs generated by a similar process have similar substructures

emerging at similar filtration timesteps.

To build a filtration curve, we need to choose (i) an edge weight function w : E → R that

assigns a weight to every edge, and (ii) a graph descriptor function f : G → Rd
that takes a

(sub)graph and returns a value in Rd
. By building the graph filtration FG in order of increasing

edge weight and evaluating the graph descriptor function on every subgraphGi of the filtration,

we obtain a sequence of vectors which we model as a matrix PG :=
⊕m

i=1 f(Gi) ∈ Rm×d
, the

structure that O’Bray et al. [23] termed filtration curve. In this definition, m stands for the num-

ber of thresholding edge weights in the filtrationFG, and

⊕
denotes the concatenation operator.

The filtration curve PG is a compact representation of the graph G that can be used for down-

stream tasks such as graph classification. Another way of looking at filtration curves is as a type of

(topological) feature extraction method. The graph descriptor function f can be thought of as a

feature extractor, which, when evaluated alongside a filtration, yields a multi-scale representation

of the graph.

It shall be noted that the weight thresholds of PG are not necessarily equal among all graphs

in the dataset. This is a very deliberate design choice as it allows for a sparse representation of the

graph with only changes of the curve at the weight thresholds being stored in the matrix. However,

it is also possible to standardize the representations by creating a shared sorted index of all weight

thresholds of the dataset and forward-filling the missing values.

In the following sections, we will discuss the choice of edge weight and graph descriptor func-

tions in more detail.

4.1.1 EdgeWeight Function

The edge weight function is needed in order to define a filtration over the graph. O’Bray et al.

propose the following edge weight functions:

7

4 Methods

Figure 4.1: Examples of graphs with different Ricci curvature values. The leftmost graph has positive cur-

vature, the middle graph has zero curvature, and the rightmost graph has negative curvature.

Native EdgeWeights

If the graph G has an edge label function lE : E → R, we can simply use these labels as edge

weights.

Max Degree

The max degree edge weight function wij = max{degree(i), degree(j)} assigns to every edge

the maximum degree of its incident nodes. However, the authors note the limited expressiveness

of this function, as no further information about vertex neighbourhoods is taken into account.

Ricci Curvature

Ricci curvature is a graph isomorphism invariant, which means that it is a property that remains

unchanged under graph isomorphisms. Two graphs are said to be isomorphic if there exists a bi-

jective mapping between their vertices such that the adjacency relationships are preserved [27].

Intuitively, Ricci curvature measures the deviation of a graph from a grid graph. To give an ex-

ample, a tree has negative curvature, while a fully connected graph has positive curvature (figure

4.1).

More specifically, the authors use the curvature definition proposed by Ollivier [26]:

κα(x, y) = 1−
W (mα

x ,m
α
y)

d(x, y)
(4.1)

for all x, y ∈ V . Here, W denotes the Wasserstein distance [13] between two probability mea-

sures. O’Bray et al. use the shortest path distance d and a probability measure which is defined

as

mα
x(v) =


α if v = x

1−α
degree(x) if v ∈ N (x)

0 otherwise,

(4.2)

where α ∈ [0, 1] is a parameter that controls the influence of the node degree on the curvature,

and N (x) denotes the set of neighbours of x. The authors set α = 0.5 and assign the Ollivier-

Ricci curvature κα(x, y) as the weight of each edge {x, y}.

8

4.1 Filtration Curves

Heat Kernel Signature

The heat kernel signature [34] is a highly expressive, but computationally costly summary due to

needing a full eigendecomposition of a matrix. Carrière et al. [4] define it as

hks(G, t, v) =

n∑
i=1

exp(−tλi)ψi(v)
2, (4.3)

where t is the diffusion parameter,λi is the ith
eigenvalue of the Laplacian matrix ofG, andψi(v)

is the ith
eigenfunction of the graph Laplacian. The weight of each edge {x, y} is then calculated

as max{hks(G, t, x), hks(G, t, y)}.

4.1.2 Graph Descriptor Function

Now that we have defined a filtration over the graph, we need to choose a graph descriptor func-

tion f . O’Bray et al. propose the following graph descriptor functions:

Node Label Histogram

The node label histogram graph descriptor function counts the number of nodes with a given

label. The dimensionality of the descriptor is equal to the number of unique node labels in the

dataset.

Count of Connected Components

As the node label histogram cannot be used for graphs without node labels, the authors resort

to counting the number of connected components in such cases. This number only changes at

thresholds at which a connected component is either created or destroyed. Therefore, it suffices

to only store the count at these thresholds, leading to an even sparser representation of the graph.

4.1.3 Properties of Filtration Curves

O’Bray et al. note that when decomposing the graph descriptor function f : G → Rd
into a set

of subfunctions fi : G → R, one obtains piecewise linear functions that form a vector space.

Since this means that addition and scalar multiplication is well-defined for these subfunctions,

one can calculate a mean filtration curve. As each of these subfunctions can be decomposed into

step functions (which satisfy integrability), theLp
-norm is defined as

∥fi∥ = (

∫
R
|fi(x)|pdx)

1
p . (4.4)

Therefore, a similarity function for two subfunctions f, g is obtained by calculating

⟨f, g⟩ =
∫
R
f(x)g(x)dx. (4.5)

9

4 Methods

Equation 4.5 can be computed efficiently and subsequently input to a kernel method such as an

SVM. However, the authors chose to vectorize PG instead, as this allows for the use of a random

forest classifier while preserving the ability to discover interactions between the subfunctions.

4.2 Filtration Surfaces

Now that we have introduced filtration curves, we propose a natural way of extending them to the

dynamic setting. Specifically, we propose a method for classifying discrete-time dynamic graphs

(DTDG) G. Intuitively, we calculate filtration curves PGi for all graphs Gi ∈ G and therefore

extend the curve to a third dimension, yielding a surface. Formally, we model the sequence of fil-

tration curves as a tensor RG :=
⊕n

i=1 PGi ∈ Rn×m×d
, where n is the length of the dynamic

graph, m is the number of weight thresholds in the filtration, and d is the dimensionality of the

graph descriptor function. The careful reader will note that the filtration curves PGi do not nec-

essarily share the same weight thresholds. Therefore, it is necessary to compute a shared weight

index as described in section 4.1.

Just like filtration curves are step functions because the graph descriptor function does not

change in-between thresholding weights, filtration surfaces can be thought of as step-like surfaces

when assuming that the filtration curve does not change in-between timestamps of the dynamic

graph. Latter assumption is reasonable when the dynamic graph is the “ground truth” and the di-

rect result of some generation process. However, in the case of real-world data, it is likely that

the dynamic graph was obtained by sampling a streaming graph at discrete time intervals. In

such cases, forward-filling filtration curves until the next timestamp might not be the optimal ap-

proach. Instead, our representation permits the use of any interpolation function to fill the gaps

between timestamps, which can even be learnt from data, yielding a (lossy) compression mech-

anism. Alternatively, one could learn an interpolation function by masking parts of a filtration

surface of an underlying “ground truth” dynamic graph and predicting the missing values, sim-

ilar to the proxy objective of BERT [5], or even mask the entire filtration surface from a specific

timestamp onwards and predict the next filtration curve, similar to the objective of the original

Transformer architecture [40]. The latter approach would yield a model for filtration surfaces

with the ability to extrapolate beyond the observed time interval.

4.2.1 Classification

In order to classify filtration surfaces, we vectorize them by flattening the tensor along the time

dimension, and flattening the resulting matrix along the weight dimension. The resulting vector

is then input to a random forest classifier. This means that each dimension of the input vector

corresponds to a specific weight threshold at a specific timestamp. Since we standardized all filtra-

tion curves of a dataset to have the same weight thresholds, all vectors have the same length and

all vector dimensions are comparable.

4.2.2 Filtration Trajectories

Another way of extending filtration curves to the dynamic setting is to model the growth process

of a dynamic graph as a filtration along the time dimension to obtain what we term a filtration

10

4.2 Filtration Surfaces

timestamp

weight

graph descriptor function

filtration along weight

filtration along time

Figure 4.2: Filtration trajectory of a dynamic graph for a 1-dimensional graph descriptor function. If the

graph-descriptor function is higher dimensional, we can construct a filtration trajectory for each

dimension.

trajectory. Intuitively, this means that we extend thed-dimensional space of the filtration curve to a

(d+1)-dimensional space, where the additional dimension is the time dimension. The filtration

trajectory then stays in the d-dimensional subspace for the duration of the construction of the

starting graph of the dynamic graph and subsequently starts moving along the time dimension.

Formally, we model the filtration trajectory as a matrixTG :=
⊕m

i=1 f̂((G1)i)⊕
⊕n

i=2 f̃(Gi) ∈
R(m+n−1)×(d+1)

, where G1 is the starting graph (with (G1)i being the ith
subgraph in the filtra-

tion of the starting graph), G is the dynamic graph (with Gi being the graph at timestamp i of the

dynamic graph), f̂ : G → R(d+1)
is the graph descriptor function f , but with an additional

output dimension which encodes the timestep and is always set to 1, and f̃ : G→ R(d+1)
is the

function f̂ , but with the additional output dimension being the timestamp of the graph Gi.

We will now prove that filtration surfaces are strictly more expressive than filtration trajecto-

ries by first proving that filtration surfaces are at least as expressive as filtration trajectories, and

subsequently giving an example of dynamic graphs that have distinct filtration surfaces, but indis-

tinguishable filtration trajectories.

Lemma 1. All dynamic graphs that have distinct filtration trajectories also have distinct filtration
surfaces.

Proof. Let G′,G′′
be two dynamic graphs and let TG′ , TG′′ be their respective filtration trajec-

tories. Let G′
t, G′′

t be the graphs at timestamp t of G′
and G′′

respectively. Then we have two

cases: (i) There exists a step during the filtration along the weights of G′
1 and G′′

1 , and there-

fore also a weight w′
, such that f̂((G′

1)w′) ̸= f̂((G′′
1)w′). Then it follows per definition that

f((G′
1)w′) ̸= f((G′′

1)w′): the first filtration curves of the two filtration surfaces are distinct,

11

4 Methods

and therefore RG′ and RG′′ are also distinct. (ii) There exists a timestamp t > 1 such that

f̃(G′
t) ̸= f̃(G′′

t). Then there exists a step during the filtration along the weights of G′
t and G′′

t ,

and therefore also a weight w′′
, such that f((G′

t)w′′) ̸= f((G′′
t)w′′). Specifically, the weight w′′

is the maximum weight threshold.

A B

CD

1

2

3

4

(a) Graph GS

A B

D

1

3

(b) Graph G′
2

B

CD

2

4

(c) Graph G′′
2

Figure 4.3: Graphical representations of GS , G′
2, and G′′

2 of Lemma 2.

Lemma 2. There exist dynamic graphs that have distinct filtration surfaces, but indistinguishable
filtration trajectories.

To prove this, one can construct any two dynamic graphsG′,G′′
with arbitrary, but fixedGS =

G′
1 = G′′

1 , and G′
2, G′′

2 , such that f̃(G′
2) = f̃(G′′

2) and PG′
2
̸= PG′′

2
. We give one such example.

Proof. Let G′ = (GS ,G′
2), G′′ = (GS ,G′′

2) be two dynamic graphs of length 2, where GS =
({A,B,C,D}, ({A,B}, {B,C}, {C,D}, {D,A})).

LetGS have a node label function lV,GS
(v) =

{
1 if v ∈ {A,C}
0 if v ∈ {B,D}

and an edge label function

lE,GS
(e) =


1 if e = {A,B}
2 if e = {B,C}
3 if e = {C,D}
4 if e = {D,A}

(figure 4.3a).

Let G′
2 = ({A,B,D}, ({A,B}, {D,A})) with lV,G′

2
(v) =

{
1 if v = A

0 if v ∈ {B,D}
and

lE,G′
2
(e) =

{
1 if e = {A,B}
3 if e = {D,A}

(figure 4.3b).

Let G′′
2 = ({B,C,D}, ({B,C}, {C,D})) with lV,G′′

2
(v) =

{
1 if v = C

0 if v ∈ {B,D}
and

lE,G′′
2
(e) =

{
2 if e = {B,C}
4 if e = {C,D}

(figure 4.3c).

Then the (standardized) node label filtration curve ofG′
2 isPG′

2
= ((1, 1), (1, 1), (2, 1), (2, 1)),

while the (standardized) node label filtration curve ofG′′
2 isPG′′

2
= ((0, 0), (1, 1), (1, 1), (2, 1)).

12

4.2 Filtration Surfaces

Since PG′
2
̸= PG′′

2
, we can deduce that the filtration surfaces RG′ and RG′′ are not equal. How-

ever, TG′ = ((1, 1, 1), (1, 2, 1), (2, 2, 1), (2, 2, 1), (2, 1, 2)) = TG′′ .

Proposition 1. Filtration surfaces are strictly more expressive than filtration trajectories.

Proof. This is a direct consequence of the previous two lemmas.

While we have proven that filtration surfaces are strictly more expressive than filtration trajec-

tories, the latter representation is significantly more compact. This would result in an accelerated

training process and a notable gain in terms of inference speed, however we leave experimental

evaluation of this approach for future work.

13

5 Experiments

5.1 Experimental Setup

To evaluate the performance of our proposed methods, we conduct experiments on both syn-

thetic and real-world datasets. All experiments were conducted on a cluster, on which 8x Intel

Xeon 6134 CPUs and 64 GB of RAM were allocated for each run. We vectorize our filtration

surfaces according to section 4.2.1 and use a random forest with 1000 trees and without a maxi-

mum depth as our classifier. We run 10 iterations of stratified 10-fold cross validation and report

the mean and standard deviation of the accuracies.

5.2 Synthetic Datasets

We generate three synthetic datasets, each with 100 dynamic graphs, two node labels, five starting

nodes, ten timesteps per dynamic graph and two edges added per timestep. The dynamic graph

is assigned the label 1 if there are more nodes of class 1 in the final graph than of class 0, and the

label 0 otherwise. The first dataset is generated by creating random graphs according to the the

Barabási-Albert model [1], the second by creating random graphs according to the Erdős-Rényi

model [9], and the third by creating a random starting graph via the Barabási-Albert model, and

then adding edges according to the preferential attachment mechanism [2]. Edge weights are as-

signed randomly in the range [1, 10]. Our method, the node label histogram filtration surface

using native edge weights (FS-NW), is able to classify almost all dynamic graphs correctly across

all three datasets, as shown in Table 5.1.

5.3 Real-World Datasets

We evaluate our method on five real-world datasets, namely the MIT Reality Mining dataset [7],

the Highschool and Infectious datasets from the SocioPatterns project [32], the Tumblr dataset –

a subset of the Memetracker dataset [16] –, as well as a subset of the Dblp dataset [17]. All of our

datasets can be found in the TUDataset collection [22].

Method Dataset

Erdős-Rényi (R) Barabási-Albert (R) Barabási-Albert (PA)

FS-NW 100 ±0.0 100 ±0.0 99.10 ±0.54

Table 5.1: Results of the experiments on the synthetic datasets. R stands for random, PA stands for prefer-

ential attachment. FS-NW denotes the filtration surfaces using native edge weights.

15

5 Experiments

Figure 5.1: Visualisation of mean node label histogram filtration surfaces of node 0 of the Highschool

dataset. The left figure shows a scatter plot of the mean filtration surface for dynamic graphs

of the first class, the right figure does so for the second class. Both surfaces are taken from the

first task. The mean filtration surface is calculated by individually averaging all filtration surface

dimensions across all dynamic graphs of a given class. While we could have depicted the surface

by forward-filling within and in-between filtration curves, we chose to use a scatter plot to avoid

giving the appearance of density where it does not exist.

The datasets are obtained by generating induced subgraphs via BFS runs from each vertex.

Afterwards a dissemination process is simulated on each subgraph according to the susceptible-
infected (SI) model [6]. The SI model is a simple epidemiological model, which describes the

spread of a disease in a population of susceptible and infected individuals. At the beginning of

the simulation, a random node is chosen as the starting node and labeled as infected. In each

timestep, each infected node infects each of its susceptible neighbours with probability p. In our

case, the simulation stops when half of the nodes are infected. The dataset statistics are shown in

Table 5.2.

For our first classification task, nodes of half of the dataset of dynamic graphs are labeled by

simulating the SI model with p = 0.5, and nodes of the other half are labeled randomly. Former

Properties Dataset

MIT Highschool Infectious Tumblr Dblp

Size 97 180 200 373 755

∅ |V| 20 52.3 50 53.1 52.9

min |E| 126 286 218 96 206

max |E| 3 363 517 505 190 225

∅ |E| 702.8 262.4 220.4 98.7 156.8

∅max d(v) 680.7 92.5 43.8 24.4 26.4

Table 5.2: Statistics of the datasets (from [25]).

16

5.3 Real-World Datasets

Figure 5.2: Boxplot of the first classification task on the Dblp dataset. The boxes depict the standard devi-

ation, while the line inside the box represents the mean. We omit the temporal kernel methods

from the boxplot, as they are not comparable to the other methods in terms of scalability.

dynamic graphs are assigned class 0, while the latter are of class 1. For our second classification

task, nodes of both dynamic graph classes are labeled using the SI model withp = 0.2 for dynamic

graphs of class 0 and p = 0.8 for the others. The results of the first and second classification task

are shown in Table 5.3 and Table 5.4, respectively. We used node label histogram filtration sur-

faces with Ricci curvature as our edge weight function (FS-RC), since the dynamic graphs of the

datasets do not have native edge weights. Figure 5.2 shows a box plot of our approach and com-

parable methods on the Dblp dataset. Methods that start with Stat- are static graph classification

techniques that were applied to dynamic graphs by converting them to spatiotemporal versions.

RG, DL and SE [25] are three approaches for converting dynamic graphs to static graphs in a

way that maximizes the preservation of temporal information. The APPROX methods [25] are

stochastic variants of DL with provable approximation guarantees. S in APPROX(S=k) denotes

the number of temporal walks used for the approximation.

The results show that our method is able to outperform the static methods in the first clas-

sification task on all but the Tumblr dataset and exhibits comparable or higher accuracies than

Graph Isomorphism Networks (GIN) [46] and Jumping Knowledge Networks (JK) [47] on the

RG representation. One some datasets, a filtration surface is also comparable in performance to

non-kernel-based methods on the DL and SE representations, as well as the APPROX methods,

but on other datasets, it falls short of their performance. Only the temporal variants of the random

walk kernel (RW) [33] and the Weisfeiler-Lehman subtree kernel (WL) [30] consistently outper-

form our approach, both of which have scalability issues as discussed in section 3.4. Overall, our

method exhibits a significantly lower standard deviation than any other method.

17

5 Experiments

Method Dataset

MIT Highschool Infectious Tumblr Dblp

S
t
a
t
i
c

Stat-RW 61.03 ±2.4 61.61 ±4.3 75.80 ±1.6 79.50 ±1.6 83.64 ±0.8

Stat-WL 43.48 ±1.9 48.38 ±1.5 64.95 ±5.3 76.87 ±0.9 78.36 ±0.6

Stat-GIN 65.20 ±4.5 50.77 ±5.4 66.05 ±3.7 74.46 ±2.1 85.37 ±1.5

Stat-JK OOM 49.17 ±3.7 53.60 ±3.8 71.69 ±1.7 85.88 ±0.7

D
y

n
a
m

i
c

RG-RW 61.31 ±2.7 90.16 ±1.0 89.30 ±1.0 74.99 ±1.9 90.60 ±1.0

RG-WL 81.88 ±1.1 89.88 ±0.9 91.75 ±1.0 70.50 ±1.0 90.45 ±0.5

RG-GIN 50.65 ±4.2 51.11 ±2.5 58.20 ±4.0 72.63 ±1.8 86.36 ±0.9

RG-JK 50.74 ±3.1 50.83 ±4.9 47.85 ±2.7 69.14 ±3.6 86.43 ±0.7

DL-RW 92.91 ±0.9 98.33 ±0.7 97.05 ±0.8 94.64 ±0.5 98.16 ±0.1

DL-WL 90.67 ±1.6 98.88 ±0.4 97.35 ±1.5 94.05 ±0.9 98.56 ±0.3

DL-GIN OOM 88.67 ±2.1 92.85 ±1.7 90.39 ±1.4 97.72 ±0.4

DL-JK OOM 86.22 ±2.6 91.55 ±2.3 89.30 ±1.5 97.57 ±0.3

SE-RW 88.56 ±1.0 96.89 ±1.2 97.60 ±0.6 93.97 ±0.9 98.65 ±0.3

SE-WL 87.31 ±1.9 96.72 ±0.7 94.45 ±1.1 93.51 ±0.6 97.38 ±0.2

SE-GIN 75.98 ±3.7 92.28 ±1.2 93.10 ±1.9 92.78 ±1.1 97.87 ±0.3

SE-JK 75.37 ±3.6 92.33 ±2.7 93.50 ±1.9 92.30 ±0.9 97.14 ±0.9

APPROX (S=50) OOM 81.66 ±1.7 84.55 ±1.6 86.92 ±1.2 92.56 ±0.9

APPROX (S=100) 81.88 ±1.0 81.66 ±1.7 84.55 ±1.6 86.92 ±1.2 92.56 ±0.9

APPROX (S=200) 83.69 ±3.6 86.11 ±1.2 89.35 ±1.6 90.62 ±0.6 94.92 ±0.7

APPROX (S=500) 84.26 ±3.3 91.05 ±6.4 91.85 ±1.7 92.73 ±0.9 97.03 ±0.4

FS-RC 58.88 ±1.97 82.56 ±0.83 83.55 ±0.99 68.16 ±1.31 92.94 ±0.42

Table 5.3: Table showing classification accuracies in percent and standard deviation for the first classifica-

tion task. OOM means out of memory. The accuracies of the comparison methods are taken

from [24]. FS-RC denotes filtration surfaces with Ollivier-Ricci curvature as the edge weight

function.

18

5.3 Real-World Datasets

Method Dataset

MIT Highschool Infectious Tumblr Dblp

S
t
a
t
i
c

Stat-RW 56.84 ±2.6 62.83 ±2.9 63.05 ±1.4 65.26 ±1.9 61.17 ±0.9

Stat-WL 42.42 ±3.9 60.83 ±3.2 63.60 ±1.3 68.31 ±1.5 63.11 ±0.9

Stat-GIN 55.60 ±11.0 54.05 ±4.7 55.25 ±3.3 64.99 ±1.1 61.92 ±1.2

Stat-JK OOM 53.16 ±3.2 53.00 ±2.9 65.42 ±2.8 61.34 ±1.1

D
y

n
a
m

i
c

RG-RW 58.03 ±3.7 77.33 ±2.4 72.05 ±2.2 68.48 ±1.5 63.24 ±1.2

RG-WL 66.81 ±2.0 82.78 ±1.3 77.40 ±1.2 68.25 ±1.2 66.16 ±0.5

RG-GIN 53.80 ±16.0 53.61 ±3.5 51.80 ±4.2 64.70 ±2.4 60.24 ±1.8

RG-JK 51.80 ±9.7 54.61 ±2.9 52.60 ±3.2 65.50 ±2.6 61.00 ±1.1

DL-RW 82.64 ±2.1 91.44 ±1.1 87.35 ±1.3 76.51 ±0.5 81.79 ±0.9

DL-WL 40.87 ±3.6 87.11 ±1.7 77.55 ±2.0 78.69 ±0.8 74.47 ±1.1

DL-GIN OOM 89.11 ±2.0 80.60 ±2.2 75.45 ±2.4 80.05 ±1.1

DL-JK OOM 85.00 ±2.8 75.70 ±3.5 73.10 ±1.8 79.98 ±1.3

SE-RW 51.03 ±5.1 90.77 ±1.1 83.60 ±1.1 77.09 ±1.0 83.31 ±1.0

SE-WL 46.52 ±3.9 91.55 ±0.9 79.60 ±1.5 78.64 ±1.4 81.24 ±0.6

SE-GIN 51.40 ±11.1 85.88 ±2.1 75.05 ±3.4 73.23 ±1.7 80.72 ±1.1

SE-JK 51.40 ±10.9 82.44 ±2.0 74.25 ±2.4 74.55 ±1.4 81.18 ±1.0

APPROX (S=50) 55.81 ±3.2 77.94 ±1.8 71.70 ±2.2 72.96 ±1.4 68.70 ±0.8

APPROX (S=100) 59.24 ±5.5 83.56 ±1.1 76.25 ±2.5 73.03 ±2.3 72.50 ±0.7

APPROX (S=250) 59.48 ±3.9 88.56 ±1.7 78.75 ±3.0 75.47 ±1.2 74.44 ±0.9

FS-RC 53.34 ±1.78 66.67 ±0.93 67.45 ±1.06 63.56 ±1.04 63.27 ±0.78

Table 5.4: Table showing classification accuracies in percent and standard deviation for the second classifi-

cation task. OOM means out of memory.

19

6 Conclusion

We extend prior work on filtration curves [23] to the dynamic setting and introduce filtration sur-
faces, a method for classifying discrete-time dynamic graphs consisting of labeled or unlabeled

graphs. Experimentally, filtration surfaces outperform static methods applied to spatiotemporal

graphs. Moreover, they are comparable in performance to non-kernel-based methods and approx-

imate kernel methods applied to static graphs, which were obtained by transforming dynamic

graphs using techniques described in [25].

For even better scalability, we present an alternative method, which we term filtration trajec-
tories, and prove that its expressivity is upper-bounded by that of filtration surfaces. Since the

conversion approaches described in [25] lead to a blow-up of the size of the static graph, we argue

that our methods pose scalable and attractive alternatives for dynamic graph classification.

There are several promising future directions to explore, such as learning the interpolation

function between curves of filtration surfaces in cases where the dynamic graph is obtained by

sampling from an underlying “ground truth” dynamic graph, learning an extrapolation function

by masking parts of the filtration surface, and experimentally evaluating the efficacy of filtration

trajectories on dynamic graphs. Conducting an extensive runtime analysis of filtration surfaces in

comparison with other methods for dynamic graph classification would also constitute a valuable

future contribution. Lastly, we believe that the field of dynamic graph classification would benefit

from a more thorough investigation of novel modelling approaches for dynamic graphs, such as

the one proposed in [3].

21

Bibliography

1. R. Albert and A.-L. Barabási. “Statistical mechanics of complex networks”. Reviews of mod-
ern physics 74:1, 2002, p. 47.

2. A.-L. Barabási and R. Albert. “Emergence of scaling in random networks”. science 286:5439,

1999, pp. 509–512.

3. W. Bernardoni, R. Cardona, J. Cleveland, J. Curry, R. Green, B. Heller, A. Hylton, T. Lam,

and R. Kassouf-Short. Algebraic and Geometric Models for Space Networking. 2023. arXiv:

2304.01150 [math.AT].

4. M. Carrière, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda. “Perslay: A neural

network layer for persistence diagrams and new graph topological signatures”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2786–2796.

5. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirectional

transformers for language understanding”. arXiv preprint arXiv:1810.04805, 2018.

6. O. Diekmann and J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases:
model building, analysis and interpretation. Vol. 5. John Wiley & Sons, 2000.

7. N. Eagle and A. Pentland. “Reality mining: sensing complex social systems”. Personal and
ubiquitous computing 10, 2006, pp. 255–268.

8. H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Math-

ematical Society, 2022, pp. 178–185.

9. P. ERDdS and A. R&wi. “On random graphs I”. Publ. math. debrecen 6:290-297, 1959,

p. 18.

10. K. Feng, C. Li, X. Zhang, and J. ZHOU. “Towards Open Temporal Graph Neural Net-

works”. In: The Eleventh International Conference on Learning Representations. 2022.

11. W. Hamilton, Z. Ying, and J. Leskovec. “Inductive Representation Learning on Large Graphs”.

In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Asso-

ciates, Inc., 2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

12. M. Jin, Y.-F. Li, and S. Pan. “Neural Temporal Walks: Motif-Aware Representation Learn-

ing on Continuous-Time Dynamic Graphs”. In: Advances in Neural Information Process-
ing Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh.

Vol. 35. Curran Associates, Inc., 2022, pp. 19874–19886. url: https : / / proceedings .

neurips.cc/paper_files/paper/2022/file/7dadc855cef7494d5d956a8d28add871-Paper-

Conference.pdf.

23

https://arxiv.org/abs/2304.01150
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7dadc855cef7494d5d956a8d28add871-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7dadc855cef7494d5d956a8d28add871-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7dadc855cef7494d5d956a8d28add871-Paper-Conference.pdf

Bibliography

13. L. V. Kantorovich. “Mathematical methods of organizing and planning production”. Man-
agement science 6:4, 1960, pp. 366–422.

14. B.-H. Kim, J. C. Ye, and J.-J. Kim. “Learning dynamic graph representation of brain connec-

tome with spatio-temporal attention”. Advances in Neural Information Processing Systems
34, 2021, pp. 4314–4327.

15. N. M. Kriege, F. D. Johansson, and C. Morris. “A survey on graph kernels”. Applied Net-
work Science 5:1, 2020.

16. J. Leskovec, L. Backstrom, and J. Kleinberg. “Meme-tracking and the dynamics of the news

cycle”. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2009, pp. 497–506.

17. M. Ley. “The DBLP computer science bibliography: Evolution, research issues, perspec-

tives”. In: International symposium on string processing and information retrieval. Springer.

2002, pp. 1–10.

18. Z. Li, K. Fujiwara, and G. Tanaka. Dynamical Graph Echo State Networks with Snapshot
Merging for Dissemination Process Classification. 2023. arXiv: 2307.01237 [cs.LG].

19. F. Manessi, A. Rozza, and M. Manzo. “Dynamic graph convolutional networks”. Pattern
Recognition 97, 2020, p. 107000. issn: 0031-3203. doi: https://doi.org/10.1016/j.

patcog . 2019 . 107000. url: https : / / www . sciencedirect . com / science / article / pii /

S0031320319303036.

20. N. Masuda and R. Lambiotte. A Guide to Temporal Networks. World Scientific, 2016. isbn:

978-1-78634-114-3. doi: 10.1142/q0268.

21. A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore. “Automating the construction of

internet portals with machine learning”. Information Retrieval 3, 2000, pp. 127–163.

22. C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: A
collection of benchmark datasets for learning with graphs. 2020. arXiv: 2007.08663 [cs.LG].

23. L. O’Bray, B. Rieck, and K. Borgwardt. “Filtration Curves for Graph Representation”. In:

Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD). Association for Computing Machinery, New York, NY, USA, 2021.

doi: 10.1145/3447548.3467442. In press.

24. L. Oettershagen. “Temporal Graph Algorithms”. PhD thesis. Universitäts-und Landesbib-

liothek Bonn, 2022.

25. L. Oettershagen, N. M. Kriege, C. Morris, and P. Mutzel. “Temporal Graph Kernels for

Classifying Dissemination Processes”. In: Proceedings of the 2020 SIAM International Con-
ference on Data Mining (SDM), pp. 496–504. doi: 10.1137/1.9781611976236.56. eprint:

https://epubs.siam.org/doi/pdf/10.1137/1.9781611976236.56. url: https://epubs.

siam.org/doi/abs/10.1137/1.9781611976236.56.

26. Y. Ollivier. “Ricci curvature of Markov chains on metric spaces”. Journal of Functional Anal-
ysis 256:3, 2009, pp. 810–864. issn: 0022-1236. doi: https : / / doi . org / 10 . 1016 / j .

jfa . 2008 . 11 . 001. url: https : / / www . sciencedirect . com / science / article / pii /

S002212360800493X.

24

https://arxiv.org/abs/2307.01237
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.107000
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2019.107000
https://www.sciencedirect.com/science/article/pii/S0031320319303036
https://www.sciencedirect.com/science/article/pii/S0031320319303036
http://dx.doi.org/10.1142/q0268
https://arxiv.org/abs/2007.08663
http://dx.doi.org/10.1145/3447548.3467442
http://dx.doi.org/10.1137/1.9781611976236.56
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976236.56
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.56
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236.56
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2008.11.001
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2008.11.001
https://www.sciencedirect.com/science/article/pii/S002212360800493X
https://www.sciencedirect.com/science/article/pii/S002212360800493X

Bibliography

27. R. C. Read and D. G. Corneil. “The graph isomorphism disease”. Journal of graph theory
1:4, 1977, pp. 339–363.

28. E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal
Graph Networks for Deep Learning on Dynamic Graphs. 2020. arXiv: 2006.10637 [cs.LG].

29. B. Rozemberczki, C. Allen, and R. Sarkar. “Multi-Scale attributed node embedding”. Jour-
nal of Complex Networks 9:2, 2021, cnab014. issn: 2051-1329. doi: 10 . 1093 / comnet /

cnab014. eprint: https://academic.oup.com/comnet/article-pdf/9/2/cnab014/40435146/

cnab014.pdf. url: https://doi.org/10.1093/comnet/cnab014.

30. N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.

“Weisfeiler-lehman graph kernels.” Journal of Machine Learning Research 12:9, 2011.

31. J. Skarding, B. Gabrys, and K. Musial. “Foundations and Modeling of Dynamic Networks

Using Dynamic Graph Neural Networks: A Survey”. IEEE Access 9, 2021, pp. 79143–79168.

doi: 10.1109/ACCESS.2021.3082932.

32. Sociopatterns. http://www.sociopatterns.org. Accessed: August 8, 2023.

33. M. Sugiyama and K. Borgwardt. “Halting in random walk kernels”. Advances in neural in-
formation processing systems 28, 2015.

34. J. Sun, M. Ovsjanikov, and L. Guibas. “A concise and provably informative multi-scale sig-

nature based on heat diffusion”. In: Computer graphics forum. Vol. 28. 5. Wiley Online Li-

brary. 2009, pp. 1383–1392.

35. A. Taheri, K. Gimpel, and T. Berger-Wolf. “Learning to Represent the Evolution of Dy-

namic Graphs with Recurrent Models”. In: Companion Proceedings of The 2019 World
Wide Web Conference. WWW ’19. Association for Computing Machinery, San Francisco,

USA, 2019, pp. 301–307. isbn: 9781450366755. doi: 10.1145/3308560.3316581. url:

https://doi.org/10.1145/3308560.3316581.

36. M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. Borgwardt. “Wasserstein Weisfeiler-

Lehman Graph Kernels”. In: Advances in Neural Information Processing Systems. Ed. by H.

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32.

Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper_files/paper/

2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf.

37. D. Tortorella, A. Micheli, et al. “Dynamic Graph Echo State Networks”. In: ESANN 2021
proceedings, European Symposium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning. i6doc. 2021, pp. 99–104.

38. R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. “DyRep: Learning Representations over

Dynamic Graphs”. In: International Conference on Learning Representations. 2019. url:

https://openreview.net/forum?id=HyePrhR5KX.

39. R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. “Representation Learning over Dynamic

Graphs”. CoRR abs/1803.04051, 2018. arXiv: 1803.04051. url: http://arxiv.org/abs/

1803.04051.

25

https://arxiv.org/abs/2006.10637
http://dx.doi.org/10.1093/comnet/cnab014
http://dx.doi.org/10.1093/comnet/cnab014
https://academic.oup.com/comnet/article-pdf/9/2/cnab014/40435146/cnab014.pdf
https://academic.oup.com/comnet/article-pdf/9/2/cnab014/40435146/cnab014.pdf
https://doi.org/10.1093/comnet/cnab014
http://dx.doi.org/10.1109/ACCESS.2021.3082932
http://www.sociopatterns.org
http://dx.doi.org/10.1145/3308560.3316581
https://doi.org/10.1145/3308560.3316581
https://proceedings.neurips.cc/paper_files/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://openreview.net/forum?id=HyePrhR5KX
https://arxiv.org/abs/1803.04051
http://arxiv.org/abs/1803.04051
http://arxiv.org/abs/1803.04051

Bibliography

40. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I.

Polosukhin. “Attention is all you need”. Advances in neural information processing systems
30, 2017.

41. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. “Graph At-

tention Networks”. In: International Conference on Learning Representations. 2018. url:

https://openreview.net/forum?id=rJXMpikCZ.

42. S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, and J. Yang. “Multiscale Dynamic Graph Con-

volutional Network for Hyperspectral Image Classification”. IEEE Transactions on Geo-
science and Remote Sensing 58:5, 2020, pp. 3162–3177. doi: 10.1109/TGRS.2019.2949180.

43. H. Wang, J. Wu, X. Zhu, Y. Chen, and C. Zhang. “Time-variant graph classification”. IEEE
Transactions on systems, man, and cybernetics: systems 50:8, 2018, pp. 2883–2896.

44. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. “Dynamic Graph

CNN for Learning on Point Clouds”. ACM Trans. Graph. 38:5, 2019. issn: 0730-0301.

doi: 10.1145/3326362. url: https://doi.org/10.1145/3326362.

45. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful are Graph Neural Networks? 2019.

arXiv: 1810.00826 [cs.LG].

46. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural Networks?”

In: International Conference on Learning Representations. 2019. url: https://openreview.

net/forum?id=ryGs6iA5Km.

47. K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka. “Representation learn-

ing on graphs with jumping knowledge networks”. In: International conference on machine
learning. PMLR. 2018, pp. 5453–5462.

48. D. Ye, H. Jiang, Y. Jiang, and H. Li. “Stable distance of persistent homology for dynamic

graph comparison”. Knowledge-Based Systems, 2023, p. 110855. issn: 0950-7051.doi: https:

//doi.org/10.1016/j.knosys.2023.110855. url: https://www.sciencedirect.com/

science/article/pii/S0950705123006056.

49. L. Ye and E. Keogh. “Time Series Shapelets: A New Primitive for Data Mining”. In: Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’09. Association for Computing Machinery, Paris, France, 2009, pp. 947–

956. isbn: 9781605584959. doi: 10.1145/1557019.1557122. url: https://doi.org/10.

1145/1557019.1557122.

50. S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. “Graph Transformer Networks”. In:

Advances in Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A.

Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.

51. Z. Zhang, X. Wang, Z. Zhang, H. Li, Z. Qin, and W. Zhu. “Dynamic Graph Neural Net-

works Under Spatio-Temporal Distribution Shift”. In: Advances in Neural Information
Processing Systems. Ed. by A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho. 2022. url:

https://openreview.net/forum?id=1tIUqrUuJxx.

26

https://openreview.net/forum?id=rJXMpikCZ
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1145/3326362
https://doi.org/10.1145/3326362
https://arxiv.org/abs/1810.00826
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110855
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110855
https://www.sciencedirect.com/science/article/pii/S0950705123006056
https://www.sciencedirect.com/science/article/pii/S0950705123006056
http://dx.doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122
https://doi.org/10.1145/1557019.1557122
https://openreview.net/forum?id=1tIUqrUuJxx

Appendices

27

Additional Figures

Figure 1: Frontal view of mean node label histogram filtration surfaces of node 0 of the Highschool dataset.

Figure 2: Visualisation of mean node label histogram filtration surfaces of node 1 of the Highschool dataset.

29

Additional Figures

Figure 3: Frontal view of mean node label histogram filtration surfaces of node 1 of the Highschool dataset.

Figure 4: Visualisation of mean node label histogram filtration surfaces of node 0 of the Infectious dataset.

Figure 5: Frontal view of mean node label histogram filtration surfaces of node 0 of the Infectious dataset.

30

Figure 6: Visualisation of mean node label histogram filtration surfaces of node 1 of the Infectious dataset.

Figure 7: Frontal view of mean node label histogram filtration surfaces of node 1 of the Infectious dataset.

31

Additional Figures

Figure 8: Boxplot of the first classification task on the Highschool dataset.

Figure 9: Boxplot of the first classification task on the Infectious dataset.

32

Figure 10: Boxplot of the first classification task on the MIT dataset.

Figure 11: Boxplot of the first classification task on the Tumblr dataset.

33

Additional Figures

Figure 12: Boxplot of the second classification task on the Dblp dataset.

Figure 13: Boxplot of the second classification task on the Highschool dataset.

34

Figure 14: Boxplot of the second classification task on the Infectious dataset.

Figure 15: Boxplot of the second classification task on the MIT dataset.

35

Additional Figures

Figure 16: Boxplot of the second classification task on the Tumblr dataset.

36

	Introduction
	Background
	Static Graphs
	Dynamic Graphs
	Taxonomy based on Edge Lifetimes
	Modelling Dynamic Graphs

	Filtrations

	Related Work
	Dynamic Graph Neural Networks
	Graph-Shapelet Pattern
	Stable Distance Persistent Homology
	Temporal Graph Kernels

	Methods
	Filtration Curves
	Edge Weight Function
	Graph Descriptor Function
	Properties of Filtration Curves

	Filtration Surfaces
	Classification
	Filtration Trajectories

	Experiments
	Experimental Setup
	Synthetic Datasets
	Real-World Datasets

	Conclusion
	Bibliography
	Appendices
	Additional Figures

